Documenta Ophthalmologica

, Volume 117, Issue 3, pp 245–255 | Cite as

Visual information processing in recently abstaining methamphetamine-dependent individuals: evoked potentials study

  • Jan Kremláček
  • Ladislav Hosák
  • Miroslav Kuba
  • Jan Libiger
  • Jiří Čížek
Original Research Paper

Abstract

Objective Methamphetamine (MAP) is an indirect dopamine agonist that can temporarily increase cognitive performance. However, its long-term abuse may cause dopamine depletion and consequent cognitive and attentional impairment. The worsening of visual functions in Parkinson’s disease and their improvement after levodopa administration implicates the role of dopamine in the physiology of vision. This provides the rationale for the investigation of visual functions in abstaining MAP abusers. Methods We investigated changes in visually evoked potentials (VEPs) to pattern-reversal and motion-onset stimuli. Such changes serve as indices of visual information processing in the primary and associative areas in a group of recently abstaining MAP abusers (5 females, 18 males, MAP abuse 5.3 ± 2.8 years) and in 23 age- and gender-paired controls. Results We did not find differences between the groups in visual acuity. In the group of MAP abusers we observed an attenuation of the early responses around 80 ms and a prolongation of the P1 peak latency after the reversal of high spatial frequency checkerboards (10 and 20 arcmin checks). Furthermore, an attenuation of the latter positive response (170–250 ms) was observed among all the stimuli in parieto-frontal derivations for the MAP abusers. Conclusions This is the first report suggesting a slowing and attenuation of VEP responses during visual processing in abstaining methamphetamine abusers.

Keywords

Methamphetamine Motion-onset VEPs Pattern-reversal VEPs Vision Visual evoked potentials 

References

  1. 1.
    Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG et al (2006) The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci 31:301–313PubMedGoogle Scholar
  2. 2.
    Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Methamphetamine self-administration by humans. Psychopharmacology (Berl) 157:75–81. doi:10.1007/s002130100738 CrossRefGoogle Scholar
  3. 3.
    Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433. doi:10.1016/j.pneurobio.2005.04.003 PubMedCrossRefGoogle Scholar
  4. 4.
    Nordahl TE, Salo R, Leamon M (2003) Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci 15:317–325. doi:10.1176/appi.neuropsych.15.3.317 PubMedGoogle Scholar
  5. 5.
    Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler MJ et al (2001) Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry 158:383–389. doi:10.1176/appi.ajp.158.3.383 PubMedCrossRefGoogle Scholar
  6. 6.
    Chang L, Ernst T, Speck O, Patel H, DeSilva M, Leonido-Yee M et al (2002) Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Res 114:65–79. doi:10.1016/S0925-4927(02)00004-5 PubMedCrossRefGoogle Scholar
  7. 7.
    Nordahl TE, Salo R, Natsuaki Y, Galloway GP, Waters C, Moore CD et al (2005) Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 62:444–452. doi:10.1001/archpsyc.62.4.444 PubMedCrossRefGoogle Scholar
  8. 8.
    Salo R, Nordahl TE, Natsuaki Y, Leamon MH, Galloway GP, Waters C et al (2007) Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry 61:1272–1280. doi:10.1016/j.biopsych.2006.07.031 PubMedCrossRefGoogle Scholar
  9. 9.
    Langheinrich T, Tebartz van Elst L, Lagreze WA, Bach M, Lucking CH, Greenlee MW (2000) Visual contrast response functions in Parkinson’s disease: evidence from electroretinograms, visually evoked potentials and psychophysics. Clin Neurophysiol 111:66–74. doi:10.1016/S1388-2457(99)00223-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Gottlob I, Stangler-Zuschrott E (1990) Effect of levodopa on contrast sensitivity and scotomas in human amblyopia. Invest Ophthalmol Vis Sci 31:776–780PubMedGoogle Scholar
  11. 11.
    Ethical Principles for Medical Research Involving Human Subjects (2004) http://www.wma.net/e/policy/b3.htm (accessed 23 January 2008)
  12. 12.
    Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D et al (2005) Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24:874–886. doi:10.1016/j.neuroimage.2004.09.029 PubMedCrossRefGoogle Scholar
  13. 13.
    Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47:189–202. doi:10.1016/j.visres.2006.09.020 PubMedCrossRefGoogle Scholar
  14. 14.
    Heinrich SP (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114:83–105. doi:10.1007/s10633-006-9043-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134. doi:10.1016/j.visres.2003.09.016 PubMedCrossRefGoogle Scholar
  16. 16.
    Kremlacek J, Kuba M, Kubova Z, Chlubnova J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109:169–175. doi:10.1007/s10633-004-4048-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Kremlacek J, Kuba M, Kubova Z, Langrova J, Vit F, Szanyi J (2007) Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol 115:95–103. doi:10.1007/s10633-007-9063-z PubMedCrossRefGoogle Scholar
  18. 18.
    Achim A (2001) Statistical detection of between-group differences in event-related potentials. Clin Neurophysiol 112:1023–1034. doi:10.1016/S1388-2457(01)00519-3 PubMedCrossRefGoogle Scholar
  19. 19.
    Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Muller B et al (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. Neuroimage 17:1–18. doi:10.1006/nimg.2002.1177 PubMedCrossRefGoogle Scholar
  20. 20.
    Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A et al (2006) Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. Neuroimage 31:86–108. doi:10.1016/j.neuroimage.2005.11.045 PubMedCrossRefGoogle Scholar
  21. 21.
    Anderson SJ, Holliday IE, Singh KD, Harding GF (1996) Localization and functional analysis of human cortical area V5 using magneto-encephalography. Proc Biol Sci 263:423–431. doi:10.1098/rspb.1996.0064 PubMedCrossRefGoogle Scholar
  22. 22.
    Prudencio C, Abrantes B, Lopes I, Tavares MA (2002) Structural and functional cellular alterations underlying the toxicity of methamphetamine in rat retina and prefrontal cortex. Ann NY Acad Sci 965:522–528PubMedCrossRefGoogle Scholar
  23. 23.
    Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vision Res 18:439–443. doi:10.1016/0042-6989(78)90054-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Sagliocco L, Bandini F, Pierantozzi M, Mari Z, Tzelepi A, Ko C et al (1997) Electrophysiological evidence for visuocognitive dysfunction in younger non Caucasian patients with Parkinson’s disease. J Neural Transm 104:427–439. doi:10.1007/BF01277661 PubMedCrossRefGoogle Scholar
  25. 25.
    Meinck HM, Adler L, Rader K, Conrad B (1986) Delayed visual evoked potentials in chronic alcoholism. J Neurol 233:161–163. doi:10.1007/BF00314424 PubMedCrossRefGoogle Scholar
  26. 26.
    Kremlacek J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMedGoogle Scholar
  27. 27.
    Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194. doi:10.1016/S0042-6989(01)00112-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Delon-Martin C, Gobbele R, Buchner H, Haug BA, Antal A, Darvas F et al (2006) Temporal pattern of source activities evoked by different types of motion onset stimuli. Neuroimage 31:1567–1579. doi:10.1016/j.neuroimage.2006.02.013 PubMedCrossRefGoogle Scholar
  29. 29.
    Hopf JM, Mangun GR (2000) Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping. Clin Neurophysiol 111:1241–1257. doi:10.1016/S1388-2457(00)00313-8 PubMedCrossRefGoogle Scholar
  30. 30.
    Shipp S (2004) The brain circuitry of attention. Trends Cogn Sci 8:223–230. doi:10.1016/j.tics.2004.03.004 PubMedCrossRefGoogle Scholar
  31. 31.
    Salo R, Nordahl TE, Moore C, Waters C, Natsuaki Y, Galloway GP et al (2005) A dissociation in attentional control: evidence from methamphetamine dependence. Biol Psychiatry 57:310–313. doi:10.1016/j.biopsych.2004.10.035 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jan Kremláček
    • 1
  • Ladislav Hosák
    • 2
  • Miroslav Kuba
    • 1
  • Jan Libiger
    • 2
  • Jiří Čížek
    • 2
  1. 1.Department of Pathological Physiology, Faculty of Medicine in Hradec KrálovéCharles University in PragueHradec KrálovéCzech Republic
  2. 2.Department of Psychiatry, Faculty of Medicine in Hradec Králové, University Hospital Hradec KrálovéCharles University in PragueHradec KrálovéCzech Republic

Personalised recommendations