Documenta Ophthalmologica

, Volume 116, Issue 2, pp 119–127 | Cite as

Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography

  • Ulrich Kellner
  • Simone Kellner
  • Silke Weinitz
Original Research Article


Purpose To evaluate melanin-related near-infrared fundus autofluorescence (NIA, excitation 787 nm, emission > 800 nm), lipofuscin-related fundus autofluorescence (FAF, excitation 488 nm, emission >500 nm), optical coherence tomography (OCT), and multifocal electroretinography (mfERG) in patients with chloroquine (CQ) retinopathy. Methods Two patients with progressed CQ retinopathy underwent clinical examination, ISCEV mfERG evaluation, and FAF and NIA imaging using a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2) with either a 30° or wide-angle field-of-view. OCT3 imaging was performed in one of these patients. Results In the foveola, FAF and NIA were relatively normal. Parafoveal loss of retinal pigment epithelium (RPE) was indicated by absent FAF and NIA. An area of reduced FAF and NIA surrounded the parafoveal region of RPE loss. In the adjacent area, FAF was increased and increased NIA marked the peripheral border of increased FAF. Wide-field imaging revealed increased FAF in association with retinal vessels. Retinal thickness was markedly reduced in the OCT predominantly in the parafoveal region. Visual field loss and mfERG amplitude reduction corresponded to areas with increased or reduced FAF and NIA. Conclusion Patterns of FAF and NIA indicate different stages of pathophysiologic processes involving lipofuscin and melanin in the RPE. Combined retinal imaging and functional testing provides further insights in the pathogenesis and development of retinal degenerative disease. An association of CQ retinopathy with retinal vessels architecture is hypothesized.


Chloroquine retinopathy Fundus autofluorescence Multifocal ERG Near-infrared fundus autofluorescence Retinal imaging 





Fundus autofluorescence




Near-infrared fundus autofluorescence


  1. 1.
    Browning DJ (2002) Hydroxychloroquine and chloroquine retinopathy: screening for drug toxicity. Am J Ophthalmol 133:649–656PubMedCrossRefGoogle Scholar
  2. 2.
    Shinjo SK, Maia Junior OO, Tizziani VA, Morita C, Kochen JA, Takahashi WY, Laurindo IM (2007) Chloroquine-induced bull’s eye maculopathy in rheumatoid arthritis: related to disease duration? Clin Rheumatol 26:1248–1253PubMedCrossRefGoogle Scholar
  3. 3.
    Mahon GJ, Anderson HR, Gardiner TA, McFarlane S, Archer DB, Stitt AW (2004) Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Curr Eye Res 28:277–284PubMedCrossRefGoogle Scholar
  4. 4.
    Ruther K, Foerster J, Berndt S, Schroeter J (2007) Variabilitat der retinotoxischen Gesamtdosis Chloroquin/Hydroxychloroquin. Ophthalmologe 104:875–879PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL (1978) Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci 17:1158–1175PubMedGoogle Scholar
  6. 6.
    Bernstein HN, Ginsberg J (1964) The pathology of chloroquine retinopathy. Arch Ophthalmol 71:238–245PubMedGoogle Scholar
  7. 7.
    Wetterholm DH, Winter FC (1964) Histopathology of chloroquine retinal toxicity. Arch Ophthalmol 71:82–87PubMedGoogle Scholar
  8. 8.
    Rodriguez-Padilla JA, Hedges TR 3rd, Monson B, Srinivasan V, Wojtkowski M, Reichel E, Duker JS, Schuman JS, Fujimoto JG (2007) High-speed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Arch Ophthalmol 125:775–780PubMedCrossRefGoogle Scholar
  9. 9.
    Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685PubMedGoogle Scholar
  10. 10.
    Kellner U, Renner AB, Tillack H (2006) Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Invest Ophthalmol Vis Sci 47:3531–3538PubMedCrossRefGoogle Scholar
  11. 11.
    Penrose PJ, Tzekov RT, Sutter EE, Fu AD, Allen AW Jr, Fung WE, Oxford KW (2003) Multifocal electroretinography evaluation for early detection of retinal dysfunction in patients taking hydroxychloroquine. Retina 23:503–512PubMedCrossRefGoogle Scholar
  12. 12.
    Lai TY, Chan WM, Li H, Lai RY, Lam DS (2005) Multifocal electroretinographic changes in patients receiving hydroxychloroquine therapy. Am J Ophthalmol 140:794–807PubMedCrossRefGoogle Scholar
  13. 13.
    von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412CrossRefGoogle Scholar
  14. 14.
    Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC (2007) Atlas of fundus autofluorescence imaging. Springer Verlag, BerlinGoogle Scholar
  15. 15.
    Weinberger AW, Lappas A, Kirschkamp T, Mazinani BA, Huth JK, Mohammadi B, Walter P (2006) Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci 47:3098–3108PubMedCrossRefGoogle Scholar
  16. 16.
    Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47:3556–3564PubMedCrossRefGoogle Scholar
  17. 17.
    Seagle BL, Rezai KA, Kobori Y, Gasyna EM, Rezaei KA, Norris JR Jr (2005) Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. Proc Natl Acad Sci USA 102:8978–8983PubMedCrossRefGoogle Scholar
  18. 18.
    Peters S, Lamah T, Kokkinou D, Bartz-Schmidt KU, Schraermeyer U (2006) Melanin protects choroidal blood vessels against light toxicity. Z Naturforsch [C] 61:427–433Google Scholar
  19. 19.
    Thumann G, Bartz-Schmidt KU, Kociok N, Heimann K, Schraemeyer U (1999) Ultimate fate of rod outer segments in the retinal pigment epithelium. Pigment Cell Res 12:311–315PubMedCrossRefGoogle Scholar
  20. 20.
    Peters S, Schraermeyer U (2001) Charakteristika und Funktionen des Melanins im retinalen Pigmentepithel. Ophthalmologe 98:1181–1185PubMedCrossRefGoogle Scholar
  21. 21.
    Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114PubMedCrossRefGoogle Scholar
  22. 22.
    Marmor MF, Hood DC, Keating D, Kondo M, Seeliger MW, Miyake Y (2003) Guidelines for basic multifocal electroretinography (mfERG). Doc Ophthalmol 106:105–115PubMedCrossRefGoogle Scholar
  23. 23.
    Renner AB, Tillack H, Kraus H, Kohl S, Wissinger B, Mohr N, Weber BH, Kellner U, Foerster MH (2004) Morphology and functional characteristics in adult vitelliform macular dystrophy. Retina 24:929–939PubMedCrossRefGoogle Scholar
  24. 24.
    Delori FC, Goger DG, Hammond BR, Snodderly DM, Burns SA (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A Opt Image Sci Vis 18:1212–1230PubMedCrossRefGoogle Scholar
  25. 25.
    Robson AG, Moreland JD, Pauleikhoff D, Morrissey T, Holder GE, Fitzke FW, Bird AC, van Kuijk FJ (2003) Macular pigment density and distribution: comparison of fundus autofluorescence with minimum motion photometry. Vision Res 43:1765–1775PubMedCrossRefGoogle Scholar
  26. 26.
    Kellner U, Kraus H, Foerster MH (2000) Multifocal ERG in chloroquine retinopathy: regional variance of retinal dysfunction. Graefes Arch Clin Exp Ophthalmol 238:94–97PubMedCrossRefGoogle Scholar
  27. 27.
    Maturi RK, Yu M, Weleber RG (2004) Multifocal electroretinographic evaluation of long-term hydroxychloroquine users. Arch Ophthalmol 122:973–981PubMedCrossRefGoogle Scholar
  28. 28.
    Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606PubMedCrossRefGoogle Scholar
  29. 29.
    Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ (1995) In vivo measurement of lipofuscin in Stargardt’s disease–Fundus flavimaculatus. Invest Ophthalmol Vis Sci 36:2327–2331PubMedGoogle Scholar
  30. 30.
    von Ruckmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115:609–615Google Scholar
  31. 31.
    Holder GE, Robson AG, Hogg CR, Kurz-Levin M, Lois N, Bird AC (2003) Pattern ERG: clinical overview, and some observations on associated fundus autofluorescence imaging in inherited maculopathy. Doc Ophthalmol 106:17–23PubMedCrossRefGoogle Scholar
  32. 32.
    Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW (2004) Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol 138:55–63PubMedCrossRefGoogle Scholar
  33. 33.
    Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111:1585–1594PubMedCrossRefGoogle Scholar
  34. 34.
    Renner AB, Tillack H, Kraus H, Kramer F, Mohr N, Weber BH, Foerster MH, Kellner U (2005) Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 112:586–592PubMedCrossRefGoogle Scholar
  35. 35.
    Robson AG, Saihan Z, Jenkins SA, Fitzke FW, Bird AC, Webster AR, Holder GE (2006) Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90:472–479PubMedCrossRefGoogle Scholar
  36. 36.
    Renner AB, Kellner U, Cropp E, Preising MN, MacDonald IM, van den Hurk JA, Cremers FP, Foerster MH (2006) Choroideremia: variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram. Ophthalmology 113:2066 e2061–2010CrossRefGoogle Scholar
  37. 37.
    Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, Einbock W, Holz FG, Jorzik JJ, Keilhauer C, Lois N, Mlynski J, Pauleikhoff D, Staurenghi G, Wolf S (2005) Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 46:3309–3314PubMedCrossRefGoogle Scholar
  38. 38.
    Smith-Thomas L, Richardson P, Thody AJ, Graham A, Palmer I, Flemming L, Parsons MA, Rennie IG, MacNeil S (1996) Human ocular melanocytes and retinal pigment epithelial cells differ in their melanogenic properties in vivo and in vitro. Curr Eye Res 15:1079–1091PubMedCrossRefGoogle Scholar
  39. 39.
    Peters S, Kayatz P, Heimann K, Schraermeyer U (2000) Subretinal injection of rod outer segments leads to an increase in the number of early-stage melanosomes in retinal pigment epithelial cells. Ophthalmic Res 32:52–56PubMedCrossRefGoogle Scholar
  40. 40.
    Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25:195–200PubMedGoogle Scholar
  41. 41.
    Buchanan TA, Gardiner TA, Archer DB (1984) An ultrastructural study of retinal photoreceptor degeneration associated with bronchial carcinoma. Am J Ophthalmol 97:277–287PubMedGoogle Scholar
  42. 42.
    Cideciyan AV, Swider M, Aleman TS, Roman MI, Sumaroka A, Schwartz SB, Stone EM, Jacobson SG (2007) Reduced-illuminance autofluorescence imaging in ABCA4–associated retinal degenerations. J Opt Soc Am A Opt Image Sci Vis 24:1457–1467PubMedCrossRefGoogle Scholar
  43. 43.
    Bonanomi MT, Dantas NC, Medeiros FA (2006) Retinal nerve fibre layer thickness measurements in patients using chloroquine. Clin Experiment Ophthalmol 34:130–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ulrich Kellner
    • 1
    • 2
  • Simone Kellner
    • 1
    • 2
  • Silke Weinitz
    • 1
  1. 1.AugenZentrum SiegburgSiegburgGermany
  2. 2.RetinaScienceBonnGermany

Personalised recommendations