Advertisement

Documenta Ophthalmologica

, Volume 116, Issue 1, pp 19–27 | Cite as

Correlation between full-field and multifocal VEPs in optic neuritis

  • Alexander Klistorner
  • Clare Fraser
  • Raymond Garrick
  • Stuart Graham
  • Hemamalini Arvind
Original Research Paper

Abstract

Aim To compare performance of multi-focal and full-field Visual Evoked Potentials (VEP) in patients with optic neuritis (ON). Method 26 patients with unilateral ON were enrolled. Multi-focal VEP (MF VEP) was recorded using AccuMap™ system. Four bipolar channels were analysed. Full-field VEP (FF VEP) was performed according to ISCEV standard using ESPION™ with frontal-occipital electrode placement. Pattern-reversal protocol was implemented with check size of 60′ and field of view of 30°. Result For both tests amplitude and latency of affected eye were statistically different from non-affected eye. The asymmetry of amplitude and latency between two eyes was also very similar for both tests. Averaged Relative Asymmetry Coefficient of amplitude (RAC) for the FF VEP was 0.10 ± 0.15 and for the MF VEP was 0.12 ± 0.12 (P = 0.21, paired t-test). Averaged latency difference between affected and non-affected eyes was 13.0 ± 12 ms for FF and 14.1 ± 11.1 ms for MF VEPs (P = 0.14, paired t-test). Coefficient of correlation (r) of p100 component of the FF VEP and averaged MF VEP was 0.60 (P < 0.0001) for amplitude and 0.79 (P < 0.0001) for latency. Correlation improved when amplitude and latency asymmetry between two eyes was analysed (r = 0.81 and r = 0.92 respectively). Overall 73% of affected eyes were identified as abnormal by amplitude and/or latency of the FF VEP and 89% was considered abnormal when MF VEP was used. Analysis of individual cases revealed superior performance of MF VEP in detecting small or peripheral defects.

Keywords

Multi-focal VEP Full-field VEP Optic neuritis 

Notes

Acknowledgment

Dr A. Klistorner is Sydney Medical Foundation Senior Research Fellow. Study was supported by ORIA grant.

References

  1. 1.
    Ghezzi A, Martinelli V, Torri V et al (1999) Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol 246:770–775PubMedCrossRefGoogle Scholar
  2. 2.
    Rodriguez M, Siva A, Cross SA et al (1995) Optic neuritis: a population-based study in Olmsted County, Minnesota. Neurology 45:244–250PubMedGoogle Scholar
  3. 3.
    Youl BD, Turano G, Miller DH et al (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114:2437–2450PubMedCrossRefGoogle Scholar
  4. 4.
    Halliday AM, McDonald WI, Mushin J (1972) Delayed visual evoked responsein optic neuritis. Lancet i:982–985CrossRefGoogle Scholar
  5. 5.
    Ebers GC (1985) Optic neuritis and multiple sclerosis. Arch Neurol 42:702–704PubMedGoogle Scholar
  6. 6.
    Jones SJ, Brusa A (2003) Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 206:193–198PubMedCrossRefGoogle Scholar
  7. 7.
    Daniel P, Whittridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221PubMedGoogle Scholar
  8. 8.
    Riggs LA, Wooten BR (1972) Electrical measures and psychophysical data on human vision. In: Jamison D, Hurvich LM (ed) Handbook of sensory physiology, vol 7/4. Springer-Verlag, New York, pp 690–731Google Scholar
  9. 9.
    MacKay DM, Jeffreys DA (1973) Visual evoked potentials and visual perception in man. In: Jung R (ed) Handbook of sensory physiology, vol 11. Springer, Berlin, pp 647–656Google Scholar
  10. 10.
    Spekreijse H, van der Tweel LH, Zuidma T (1973) Contrast evoked response in man. Vision Res 35:153–163Google Scholar
  11. 11.
    ONTT Group (1991) The clinical profile of optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol 109:1673–1678Google Scholar
  12. 12.
    Halliday AM, Darbett G, Blumhardt LD, Kriss A (1979) The macular and submacular subcomponents of the attern evoked response. In: Lehman D, Callaway E (eds) Human evoked potentials. Plenum Publishing, New York, pp 135–151Google Scholar
  13. 13.
    Hammond SR, MacCallum S, Yiannikas C et al (1987) Variability on serial testing of pattern reversal visual evoked potential latencies from full-field, half-field and foveal stimulation in control subjects. Electroencephalogr Clin Neurophysiol 66:401–408PubMedCrossRefGoogle Scholar
  14. 14.
    Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81PubMedCrossRefGoogle Scholar
  15. 15.
    Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39:937–950PubMedGoogle Scholar
  16. 16.
    Hood DC, Ohri N, Bo Yang E et al (2005) Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis. Doc Ophthalmol 109:189–199CrossRefGoogle Scholar
  17. 17.
    Graham SL, Klistorner A, Goldberg I (2005) Clinical application of objective perimetry using multifocal VEP in Glaucoma practice. Arch Ophthalmol 123:729–739PubMedCrossRefGoogle Scholar
  18. 18.
    Hood DC, Thienprasiddhi P, Greenstein VC et al (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45:492–498PubMedCrossRefGoogle Scholar
  19. 19.
    Fraser C, Klistorner A, Graham SL et al (2006) Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmol 107:2283–2299Google Scholar
  20. 20.
    Fraser C, Klistorner A, Graham SL et al (2006) Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch Neurol 43:847–850CrossRefGoogle Scholar
  21. 21.
    Barber C (1998) The multifocal ERG and VEP. In: Stalberg E, de Weerd A, Zidar J (eds) Proc North Eur Congr Clin Neurophysiol, Bologna, pp 209–216Google Scholar
  22. 22.
    Barber C, Wen Y (2000) The multi-focal visual evoked potential can be used to dissect the standard VEP[ARVO abstract]. Invest Ophthalmol Vis Sci 41:S334Google Scholar
  23. 23.
    Fortune B, Hood DC (2003) Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 44:1367–1375Google Scholar
  24. 24.
    Graham SL, Klistorner AI, Grigg JR, Billson FA (2000) Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9:10–19PubMedGoogle Scholar
  25. 25.
    Klistorner A, Graham SL (2001) Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 42:2145–2152PubMedGoogle Scholar
  26. 26.
    Goldberg I, Graham SL, Klistorner A (2002) Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 133:29–39PubMedCrossRefGoogle Scholar
  27. 27.
    Graham SL, Klistorner A (1999) The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma. Curr Opin Ophthalmol 10:140–146PubMedCrossRefGoogle Scholar
  28. 28.
    Harding GF, Odom JV, Spileers W, Spekreije H (1996) Standard for visual evoked potentials 1995. Vision Res 36:3567–3572PubMedCrossRefGoogle Scholar
  29. 29.
    Steinmetz H, Gunter F, Bernd-Ulrich M (1989) Craniocerebral topography within the international 10–20 system. Electroencephalogr Clin Neurophysiol 72:499–506PubMedCrossRefGoogle Scholar
  30. 30.
    Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755PubMedCrossRefGoogle Scholar
  31. 31.
    Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137CrossRefGoogle Scholar
  32. 32.
    Basar E, Rahn E, Demiralp T, Schurmann M (1998) Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes. Electroencephalogr Clin Neurophysiol 108:101–109PubMedCrossRefGoogle Scholar
  33. 33.
    Brandt ME, Jansen BH (1991) The relationship between prestimulus-alpha amplitude and visual evoked potential amplitude. Int J Neurosci 61:261–268PubMedGoogle Scholar
  34. 34.
    Rahn E, Basar E (1993) Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. Int J Neurosci 72:123–136PubMedCrossRefGoogle Scholar
  35. 35.
    Klistorner A, Graham SL (2006) Intertest variability of mfVEP amplitude: reducing its effect on the interpretation of sequential tests. Doc Ophthalmol 111:159–167CrossRefGoogle Scholar
  36. 36.
    Tusa RM, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in th ecat. J Comp Neurol 177:213–236PubMedCrossRefGoogle Scholar
  37. 37.
    Harter MR (1970) Evoked cortical responses to checkerboard patterns: effect of check-size as a function of retinal eccentricity. Vision Res 10:1365–1376PubMedCrossRefGoogle Scholar
  38. 38.
    Meredith JT, Celesia GG (1982) Pattern-reversal visual evoked potentials and retinal eccentricity. Electroencephalogr Clin Neurophysiol 53:243–253PubMedCrossRefGoogle Scholar
  39. 39.
    Yiannikas C, Walsh JC (1983) The variation of the pattern shift visual evoked response with the size of the stimulus field. Electroencephalogr Clin Neurophysiol 55:427–435PubMedCrossRefGoogle Scholar
  40. 40.
    Lesevre N, Joseph JP (1979) Modification of the pattern evoked potential in relation to the stimulated part of the visual field. Electroencephalogr Clin Neurophysiol 47:183–203PubMedCrossRefGoogle Scholar
  41. 41.
    Balachandran C, Klistorner A, Graham SL (2003) Effect of stimulus check size on multifocal visual evoked potentials. Doc Ophthalmol 106:183–188PubMedCrossRefGoogle Scholar
  42. 42.
    Ristanovic D, Hajdukovic R (1981) Effects of spatially structured stimulus fields on pattern reversal visual evoked potentials. Electroencephalogr Clin Neurophysiol 51:599–610PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alexander Klistorner
    • 1
  • Clare Fraser
    • 1
  • Raymond Garrick
    • 1
  • Stuart Graham
    • 1
  • Hemamalini Arvind
    • 1
  1. 1.Save Sight Institute, Sydney Eye HospitalUniversity of SydneySydneyAustralia

Personalised recommendations