Documenta Ophthalmologica

, Volume 115, Issue 2, pp 95–103 | Cite as

Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency

  • Jan Kremláček
  • Miroslav Kuba
  • Zuzana Kubová
  • Jana Langrová
  • František Vít
  • Jana Szanyi
Original Research Article

Abstract

We explored the effect of repeated visual stimulation on motion-onset visual evoked potentials (M-VEPs) during 25 min recording sessions in 10 subjects. The aim of the experiment was to determine influence of global motion adaptation (without motion-aftereffect) on intra-individual variability of M-VEPs and to suggest an optimal recording design for clinical examination. In addition to well described middle-time sensory adaptation, we also observed a long-time effect on motion specific N2 peak (155 ms). The N2 peak exhibited a strong relationship between its latency and inter-peak amplitude to the duration of recording in occipito-parietal derivations. In addition to the middle-term adaptation, N2 peak latency was prolonged by 10 ms and amplitude was attenuated by 30% with respect to the start of the experiment. An exponential model was employed to describe the dependency. The model can be used to reduce intra-individual variability during examination. Observed resemblance between the measured electrophysiological values and already published metabolic changes (glucose and oxygen utilization) during brain processing of visual information is discussed.

Keywords

Adaptation Habituation Fatigue Motion-onset VEPs Intra-individual variability 

References

  1. 1.
    Kuba M, Kubová Z, Kremláček J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47:189–202PubMedCrossRefGoogle Scholar
  2. 2.
    Heinrich S (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114:83–105PubMedCrossRefGoogle Scholar
  3. 3.
    Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMedCrossRefGoogle Scholar
  4. 4.
    Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMedCrossRefGoogle Scholar
  5. 5.
    Kubová Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81:209–218PubMedCrossRefGoogle Scholar
  6. 6.
    Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMedCrossRefGoogle Scholar
  7. 7.
    Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMedCrossRefGoogle Scholar
  8. 8.
    Kremláček J, Kuba M, Chlubnová J, Kubová Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44:2989–3000PubMedCrossRefGoogle Scholar
  9. 9.
    Priebe N, Churchland M, Lisberg S (2002) Constrains on source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanisms. J Neurphysiol 88:354–369Google Scholar
  10. 10.
    Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–44. Erratum in: Vision Res (1999)39:2794Google Scholar
  11. 11.
    World Medical Association Declaration of Helsinky (2004) Ethical Principles for Medical Research Involving Human Subjects. Available via http://www.wma.net/e/policy/b3.htmGoogle Scholar
  12. 12.
    Maurer P, Heinrich T, Bach M (2004) Direction tuning of human motion detection determined from population model. Eur J Neurosci19:3359–3364PubMedCrossRefGoogle Scholar
  13. 13.
    Odom JV, De Smedt E, Van Malderen L, Spileers W (1998–99) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333Google Scholar
  14. 14.
    Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537PubMedCrossRefGoogle Scholar
  15. 15.
    Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMedGoogle Scholar
  16. 16.
    Muller R, Gopfert E, Breuer D, Greenlee MW (1998–1999). Motion VEPs with simultaneous measurement of perceived velocity. Doc Ophthalmol 97:121–134Google Scholar
  17. 17.
    Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J (1998) Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121:233–241PubMedCrossRefGoogle Scholar
  18. 18.
    Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Muller B, Arnold G, Villringer A (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. Neuroimage 17:1–18PubMedCrossRefGoogle Scholar
  19. 19.
    Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMedCrossRefGoogle Scholar
  20. 20.
    Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46:1296–1302PubMedCrossRefGoogle Scholar
  21. 21.
    Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ (2002) Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage16:531–537PubMedCrossRefGoogle Scholar
  22. 22.
    Vlassenko AG, Rundle MM, Mintun MA (2006) Human brain glucose metabolism may evolve during activation: findings from a modified FDG PET paradigm. Neuroimage 33:1036–1041PubMedCrossRefGoogle Scholar
  23. 23.
    Sannita WG (2006) Individual variability, end-point effects and possible biases in electrophysiological research. Clin Neurophysiol 117:2569–2583PubMedCrossRefGoogle Scholar
  24. 24.
    Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA 98:6859–6864PubMedCrossRefGoogle Scholar
  25. 25.
    Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831PubMedCrossRefGoogle Scholar
  26. 26.
    Kubová Z, Chlubnová J, Szanyi J, Kuba M, Kremláček J (2005) Influence of physiological changes of glycaemia on VEPs and visual ERPs. Physiol Res 54:245–250PubMedGoogle Scholar
  27. 27.
    Kremláček J, Kuba M, Kubová Z, Langrová J (2006) Visual mismatch negativity elicited by magnocellular system activation. Vision Res 46:485–490PubMedCrossRefGoogle Scholar
  28. 28.
    Kremláček J, Kuba M, Kubová Z (1998) Electrophysiological manifestation of first-order motion perception. Perception 27 ECVP Abstract Supplement:192–193Google Scholar
  29. 29.
    Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jan Kremláček
    • 1
  • Miroslav Kuba
    • 1
  • Zuzana Kubová
    • 1
  • Jana Langrová
    • 1
  • František Vít
    • 1
  • Jana Szanyi
    • 1
  1. 1.Department of Pathophysiology, Faculty of Medicine in Hradec KrálovéCharles University in PragueHradec KraloveCzech Republic

Personalised recommendations