Advertisement

Documenta Ophthalmologica

, Volume 114, Issue 1, pp 9–19 | Cite as

The ‘two global flash’ mfERG in high and normal tension primary open-angle glaucoma

  • Anja M. Palmowski-WolfeEmail author
  • Margarita G. Todorova
  • Selim Orguel
  • Josef Flammer
  • Mitchell Brigell
Original Paper

Abstract

Purpose

To analyse the sensitivity of the ‘2 global flash’ multifocal electroretinogram (mfERG) to detect glaucomatous dysfunction in normal tension (NTG) and high tension primary open angle glaucoma (POAG) patients.

Methods

MfERGs were recorded from 20 NTG and 20 POAG patients and compared to those of 20 controls. The mfERG array consisted of 103 hexagons. Each m-sequence step started with a focal flash that could be either dark or light (m-sequence: 2^13, L max: 200 cd/m2, L min: 1 cd/m2), followed by two global flashes (L max: 200 cd/m2) at an interval of ∼26 ms. Focal scalar products (SP) were calculated using focal templates derived from the control recordings (VERIS 4.8). We analyzed 5 response averages (central 7.5 degrees and 4 adjoining quadrants) of the response to the focal flash, the direct component at 10–40 ms (DC) and the following two components induced by the effects of the preceding focal flash on the response to the global flashes at 40–70 ms (IC-1) and at 70–100 ms (IC-2).

Results

Both NTG and POAG patients differed from controls in the IC-1 response to the superior quadrants, and POAG patients also differed from controls in the centre. The most sensitive parameter was the IC-1 of the superior temporal quadrant with an area under the ROC curve of 0.82 for POAG and 0.79 for NTG. The DC and the IC-2 did not differ significantly between the groups. When all five response averages of the IC-1 were taken into consideration 90% of the NTG patients and 85% of the POAG patients were correctly classified as abnormal while 80% of the control subjects were correctly classified as normal.

Conclusions

This stimulus sequence holds promise for the diagnosis of early functional changes in POAG. A new finding is that both NTG, as well as POAG can be differentiated from control subjects.

Keywords

mfERG Global flash Glaucoma POAG Normal tension glaucoma 

Notes

Acknowledgements

We thank Andy Schötzau for statistical advice and Pfizer for grant support (APW,MT).

References

  1. 1.
    Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80(5):389–393PubMedGoogle Scholar
  2. 2.
    Krieglstein GK (1993) Erblindung durch Glaukom. [Blindness caused by glaucoma]. Ophthalmologe 90(6):554–556PubMedGoogle Scholar
  3. 3.
    Quigley HA, Vitale S (1997) Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 38(1):83–91PubMedGoogle Scholar
  4. 4.
    Hare W, Ton H, Woldemussie E et al (1999) Electrophysiological and histological measures of retinal injury in chronic ocular hypertensive monkeys. Eur-J-Ophthalmol 9(suppl 1):S30–3PubMedGoogle Scholar
  5. 5.
    Raz D, Seeliger MW, Geva AB et al (2002) The effect of contrast and luminance on mfERG responses in a monkey model of glaucoma. Invest Ophthalmol Vis Sci 43(6):2027–2035PubMedGoogle Scholar
  6. 6.
    Frishman LJ, Saszik S, Harwerth RS et al (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 100(2–3):231–251CrossRefGoogle Scholar
  7. 7.
    Palmowski AM, Allgayer R, Heinemann-Vernaleken B (2000) The multifocal ERG in open angle glaucoma—A comparison of high and low contrast recordings in high- and low-tension open angle glaucoma. Doc Ophthalmol 101:35–49PubMedCrossRefGoogle Scholar
  8. 8.
    Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt 19(4):306–316PubMedCrossRefGoogle Scholar
  9. 9.
    Hasegawa S, Takagi M, Usui T et al (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest-Ophthalmol-Vis-Sci 41(6):1597–1603PubMedGoogle Scholar
  10. 10.
    Palmowski AM, Ruprecht KW (2004) Follow up in open angle glaucoma. A comparison of static perimetry and the fast stimulation mfERG. Doc Ophthalmol 108:55–60PubMedCrossRefGoogle Scholar
  11. 11.
    Sutter EE, Bearse MA Jr (1995) Extraction of a ganglion cell component from the corneal response. In: America OSo, ed. Santa Fe: OSA, 1995; v. 1Google Scholar
  12. 12.
    Bearse M, Sutter EE, Smith DN, Stamper R (1995) Ganglion cell components of the multi-focal ERG are abnormal in optic nerve atrophy and glaucoma. Investigative Ophthalmology and Visual Science 36:S445Google Scholar
  13. 13.
    Bearse MA, Sutter EE, Palmowski AM (1997) New developments toward a clinical test of retinal ganglion cell function. In: America OSo (ed) Vision science and its applications, vol. 1. Washington DC, Optical Society of AmericaGoogle Scholar
  14. 14.
    Bearse MAJ, Sutter EE, Palmowski AM (1997) Luminance-dependent enhancement of ganglion cell contributions to the human multifocal ERG. Invest Ophthalmol Vis Sci 38(4):S959Google Scholar
  15. 15.
    Sutter EE, Bearse MAJ (1999) The optic nerve head component of the human ERG. Vis Res 39:419–436PubMedCrossRefGoogle Scholar
  16. 16.
    Hood D, Frishman LS, Viswanathan S et al (1999) Evidence for a ganglion cell contribution to the primate electroretinogram (ERG). Effects of TTX on the multifocal ERG in macaque. Vis Neurosci 96(3):411–416CrossRefGoogle Scholar
  17. 17.
    Bearse MA Jr, Sim D, Sutter EE et al (1996) Application of the multi-focal ERG to glaucoma. Investigative Ophthalmol & Visual Sci 37(3):S511Google Scholar
  18. 18.
    Bearse MA, Sutter EE (1998) Contrast dependence of multifocal ERG components. In: America OSo (ed) Vision science and its applications, vol 1. Washington DC, Optical Society of AmericaGoogle Scholar
  19. 19.
    Hood DC, Greenstein VC, Holopigian K et al (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci, 41(6):1570–1579PubMedGoogle Scholar
  20. 20.
    Hood DC, Birch DG (1995) Computational models of rod-driven retinal activity, 14:59–66Google Scholar
  21. 21.
    Bearse MA, Sutter EE, Shimada Y, Yong Y (1999) Topographies of the optic nerve head component (ONHC) and oscillatory potentials (OPS) in the parafovea. Invest Opthaltmol Vis Sci 40:S17Google Scholar
  22. 22.
    Palmowski-Wolfe AM, Allgayer R, Vernaleken B, Ruprecht KW (2006) Slow-stimulated multifocal ERG in high and normal tension glaucoma. Doc Ophthalmol 112(3):157–168PubMedCrossRefGoogle Scholar
  23. 23.
    Sutter EE, Bearse MA, Shimada Y, Li Y (1999) A multifocal ERG protocol for testing retinal ganglion cell function. Invest Ophthalmol Vis Sci:S15Google Scholar
  24. 24.
    Palmowski AM, Allgayer R, Heinemann-Vernaleken B, Ruprecht KW (2002) Multifocal ERG (MF-ERG) with a special multiflash stimulation technique in open angle glaucoma. Ophthalmic Res 34:83–89PubMedCrossRefGoogle Scholar
  25. 25.
    Fortune B, Bearse MAJ, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647PubMedGoogle Scholar
  26. 26.
    Fortune B, Wang L, Bui BV et al (2003) Local ganglion cell contributions to the macaque electroretinogram revealed by experimental nerve fiber layer bundle defect. Invest Ophthalmol Vis Sci 44(10):4567–4579PubMedCrossRefGoogle Scholar
  27. 27.
    Sutter EE, Tran D (1992) The field topography of ERG components in man - I. The photopic luminance response. Vision Res 32(3):433–446PubMedCrossRefGoogle Scholar
  28. 28.
    Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47(3):929–937PubMedCrossRefGoogle Scholar
  29. 29.
    Penrose PJ, Tzekov RT, Sutter EE et al (2003) Multifocal electroretinography evaluation for early detection of retinal dysfunction in patients taking hydroxychloroquine. Retina 23(4):503–512PubMedCrossRefGoogle Scholar
  30. 30.
    Shimada Y, Yong- Li Y, Bearse MAJ et al (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85(4):414–419PubMedCrossRefGoogle Scholar
  31. 31.
    Shimada Y, Bearse MAJ, Sutter EE (2005) Multifocal electroretinograms combined with periodic flashes: direct responses and induced components. Graefes Arch Clin Exp Ophthalmol 243(2):132–141PubMedCrossRefGoogle Scholar
  32. 32.
    Lindenberg T, Horn FK, Korth M (2003) Multifocal steady-state pattern-reversal electroretinography in glaucoma patients. Ophthalmologe 100(6):453–458PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Anja M. Palmowski-Wolfe
    • 1
    Email author
  • Margarita G. Todorova
    • 1
  • Selim Orguel
    • 1
  • Josef Flammer
    • 1
  • Mitchell Brigell
    • 2
  1. 1.Department of OphthalmologyUniversity Eye HospitalBaselSwitzerland
  2. 2.Pfizer Global Research & DevelopmentAnn ArborUSA

Personalised recommendations