Documenta Ophthalmologica

, Volume 112, Issue 3, pp 189–199 | Cite as

Multifocal Visual Evoked Responses to Dichoptic Stimulation Using Virtual Reality Goggles: Multifocal VER to Dichoptic Stimulation

  • Hemamalini Arvind
  • Alexander Klistorner
  • Stuart L. Graham
  • John R. Grigg


Multifocal visual evoked potentials (mfVEPs) have demonstrated good diagnostic capabilities in glaucoma and optic neuritis. This study aimed at evaluating the possibility of simultaneously recording mfVEP for both eyes with dichoptic stimulation using virtual reality goggles and also to determine the stimulus characteristics that yield maximum amplitude. ten healthy volunteers were recruited and temporally sparse pattern pulse stimuli were presented dichoptically using virtual reality goggles. Experiment 1 involved recording responses to dichoptically presented checkerboard stimuli and also confirming true topographic representation by switching off specific segments. Experiment 2 involved monocular stimulation and comparison of amplitude with Experiment 1. In Experiment 3, orthogonally oriented gratings were dichoptically presented. Experiment 4 involved dichoptic presentation of checkerboard stimuli at different levels of sparseness (5.0 times/s, 2.5 times/s, 1.66 times/s and 1.25 times/s), where stimulation of corresponding segments of two eyes were separated by 16.7, 66.7,116.7 & 166.7 ms respectively. Experiment 1 demonstrated good traces in all regions and confirmed topographic representation. However, there was suppression of amplitude of responses to dichoptic stimulation by 17.9±5.4% compared to monocular stimulation. Experiment 3 demonstrated similar suppression between orthogonal and checkerboard stimuli (p = 0.08). Experiment 4 demonstrated maximum amplitude and least suppression (4.8%) with stimulation at 1.25 times/s with 166.7 ms separation between eyes. It is possible to record mfVEP for both eyes during dichoptic stimulation using virtual reality goggles, which present binocular simultaneous patterns driven by independent sequences. Interocular suppression can be almost eliminated by using a temporally sparse stimulus of 1.25 times/s with a separation of 166.7 ms between stimulation of corresponding segments of the two eyes.


binocular dichoptic electrophysiology interocular suppression sparse VEP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baseler HA, Sutter EE, Klein SA and Carney T (1994). The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol Jan; 90(1): 65–81Google Scholar
  2. 2.
    Klistorner AI and Graham SL (2001). Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 42(9): 2145–52PubMedGoogle Scholar
  3. 3.
    Klistorner AI and Graham SL (2000). Objective perimetry in glaucoma. Ophthalmology 107(12): 2283–99PubMedCrossRefGoogle Scholar
  4. 4.
    Hood DC and Greenstein VC (2003). Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 22(2): 201–51PubMedCrossRefGoogle Scholar
  5. 5.
    Graham SL, Klistorner AI and Goldberg I (2005). Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 123: 729–39PubMedCrossRefGoogle Scholar
  6. 6.
    Hood DC, Odel JG and Zhang X (2000). Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 41: 4032–8PubMedGoogle Scholar
  7. 7.
    Klistorner AI, Graham SL and Balachandran C (2005). Objective perimetry using the multifocal visual evoked potential in central visual pathway lesions. Br J Ophthalmol 89: 739–44PubMedCrossRefGoogle Scholar
  8. 8.
    Klistorner AI, Graham SL, Grigg JR and Billson FA (1998). Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39: 937–50PubMedGoogle Scholar
  9. 9.
    Goldberg I, Graham SL and Klistorner AI (2002). Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 133: 29–39PubMedCrossRefGoogle Scholar
  10. 10.
    McDonald WI (2001). Recommended diagnostic criteria for multiple sclerosis: guidelines from the International panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–7PubMedCrossRefGoogle Scholar
  11. 11.
    Fraser CL, Klistorner A, Graham SL, Garrick R, Billson FA, Grigg JR. Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmology 2006; 11: 315–323Google Scholar
  12. 12.
    Ruseckaite R, Maddess T, Danta G, Lueck CJ and James AC (2005). Sparse multifocal stimuli for the detection of multiple sclerosis. Ann Neurol 57: 904–13PubMedCrossRefGoogle Scholar
  13. 13.
    Graham SL, Klistorner AI, Grigg JR and Billson FA (2000). Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9: 10–9PubMedGoogle Scholar
  14. 14.
    Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Leibmann JM and Ritch R (2000). An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41: 1580–7PubMedGoogle Scholar
  15. 15.
    Lennerstrand G (1978). Binocular Interaction studied with visual evoked responses (VER) in humans with normal or impaired binocular vision. Acta Ophthalmol (Copenh) 56: 628–37CrossRefGoogle Scholar
  16. 16.
    Sato E, Taniai M, Mizota A and Adachi-Usami E (2002). Binocular interaction reflected in visually evoked cortical potentials as studied with pseudorandom stimuli. Invest Ophthalmol Vis Sci 43: 3355–58PubMedGoogle Scholar
  17. 17.
    James AC, Ruseckaite R and Maddess T (2005). Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 22: 45–54PubMedCrossRefGoogle Scholar
  18. 18.
    James AC (2003). The pattern pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2): 879–90PubMedCrossRefGoogle Scholar
  19. 19.
    Maddess T, James AC and Bowman EA (2005). Contrast response of temporally sparse dichoptic multifocal visual evoked potentials. Vis Neurosci 22: 153–62PubMedCrossRefGoogle Scholar
  20. 20.
    Arden GB, Barnard WM and Mushin AS (1974). Visually evoked responses in amblyopia. Br J Ophthalmol 58: 183–92PubMedCrossRefGoogle Scholar
  21. 21.
    Lennerstrand G (1978). Some observations on visual evoked responses (VER) to dichoptic stimulation. Acta Ophthalmol (Copenh) 56: 638–47Google Scholar
  22. 22.
    Sengpiel F, Bonhoeffer T, Freeman TCB and Blakemore C (2001). On the relationship between interocular suppression in the primary visual cortex and binocular rivalry. Brain Mind 2: 39–54CrossRefGoogle Scholar
  23. 23.
    di Summa A, Polo A, Tinazzi M, Zanette G, Bertolasi L, Bongiovanni LG and Fiaschi A (1997). Binocular Interaction in normal vision studied by pattern-reversal visual evoked potential (PR-VEPS). Ital J Neurological Sci 18: 81–6CrossRefGoogle Scholar
  24. 24.
    Poggio GF (1984). Processing of stereoscopic information in monkey visual cortex. In: Edelman, GM, Gall, WE and Cowan, WH (eds) Dynamic Aspects of Neocortical Function, pp 613–35. Wiley, New YorkGoogle Scholar
  25. 25.
    Foster KH, Gaska JP, Nagler M and pollen DA (1977). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365: 331–63Google Scholar
  26. 26.
    Hubel DH, Wiesel TN and Stryker MP (1977). Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature 269(5626): 328–30PubMedCrossRefGoogle Scholar
  27. 27.
    Abbadi RV (1976). Induction masking – a study of some inhibitory interactions during dichoptic viewing. Vision Res 16: 269–75CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hemamalini Arvind
    • 1
  • Alexander Klistorner
    • 1
  • Stuart L. Graham
    • 1
  • John R. Grigg
    • 1
  1. 1.Save Sight Institute, Sydney Eye HospitalUniversity of SydneySydneyAustralia

Personalised recommendations