Documenta Ophthalmologica

, Volume 111, Issue 1, pp 23–31 | Cite as

The Decline of the Photopic Negative Response (PhNR) in the Rat after Optic Nerve Transection

  • B. LiEmail author
  • G. E. Barnes
  • W. F. Holt


Purpose: To investigate the contribution to the photopic negative response (PhNR) of the electroretinogram (ERG) by retinal ganglion cells (RGCs). The PhNR was assessed longitudinally following optic nerve transection (ONTx). Methods: Photopic ERGs were recorded from each eye of an anesthetized (ketamine/xylazine, 60 mg/kg and 5 mg/kg) Brown Norway rat using custom made electrodes (PT-IR Tef., A-M System Inc). ERGs were elicited using green Ganzfeld flashes (11.38 scd/m2, 22.76 cds/m2) and a rod suppressing green-background (40 cd/m2). PhNRs were compared before and after optic nerves were transected. Cresyl violet stained retinal flatmounts were used to estimate cell loss in the ganglion cell layer 3 and 15 weeks after optic nerve transection. The pharmacological effect of 1.3 μM intravitreal TTX on the PhNR was also evaluated. Results: There was a significant loss (p <0.05) in the PhNR of 20, 36, 34, 35, 48, 48 and 56% for ONTx eye versus the contralateral eye, at post ONTx times of 24 h, 1, 2, 3, 4, 8 and 15 weeks. B-wave amplitudes of ONTx eyes were not significantly different from the control eyes. In ONTx eyes, mean cell loss in the retinal ganglion cell layer was 27 and 55% at the 3 week and 15 week time periods. In the eyes with ONTx, the decline of PhNR amplitudes was correlated positively with RGC loss (r = 0.98; p < 0.01). Thirty minutes after intravitreal TTX injection, the PhNR was significantly reduced (57%, p<0.01). Conclusions: There was a time-dependent decline in the PhNR after ONTx, as exemplified by a 35% reduction from 1–3 weeks, a 48% decline for 4–8 weeks and a 56% decline after 15 weeks. The correlation between the decline in the PhNR and retinal ganglion cell loss suggests that the PhNR depends on inner retina integrity and the PhNR may be important biological signal or detecting glaucomatous damage and the monitoring of RGC function changes in early glaucoma.


ERG Optic nerve transected PhNR retinal ganglion cell 



Photopic Negative Response


Optic Nerve Transection


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quigley, HA, Hohman, RM, Addicks, EM, Massof, RW, Green, WR 1983Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucomaAm J Ophthalmol95673691PubMedGoogle Scholar
  2. 2.
    Viswanathan, S, Frishman, LJ, Robson, JG, Harwerth, RS, Smith, EL,III 1999The photopic negative response of the macaque electroretinogram: reduction by experimental glaucomaInvest Ophthalmol Vis Sci4011241136PubMedGoogle Scholar
  3. 3.
    Hille, B 1966Common mode of action of three agents that decrease the transient change in sodium permeability in nervesNature21012201222PubMedGoogle Scholar
  4. 4.
    Drasdo, N, Aldebasi, YH, Chiti, Z, Mortlock, KE, Morgan, JE, North, RV 2001S-cone PhNR and Pattern ERG in Primary Open Angle GlaucomaInvest Ophthalmol Vis Sci4212661272PubMedGoogle Scholar
  5. 5.
    Colotto, A, Falshini, B, Salgarello, T, Iarossi, G, Galan, ME, Scullica, L 2000Photopic negative response of the human erg: losses associated with glaucomatous damageInvest Ophthalmol Vis Sci4122052211PubMedGoogle Scholar
  6. 6.
    Trick, G 1986Pattern reversal retinal potentials abnormalities in glaucoma and ocular hypertensionInvest Ophthalmol Vis Sci2717301736PubMedGoogle Scholar
  7. 7.
    Porciatti, V, Falsini, B, Brunori, S, Colotto, A, Moretti, G 1987Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucomaDoc Ophthalmol65349355PubMedGoogle Scholar
  8. 8.
    Korth, M, Horn, F, Stork, B, Jonas, J 1989The pattern evoked electroretinogram: age-related alterations and changes in glaucomaGraefes Arch Clin Exp Ophthalmol227123131PubMedGoogle Scholar
  9. 9.
    Bach, M, Funk, J 1993Pattern electroretinogram and computerized optic nerve-head analysis in glaucoma suspectsGer J Ophthalmol2178181PubMedGoogle Scholar
  10. 10.
    Hughes, A 1979A schematic eye for the ratVision Res19569588PubMedGoogle Scholar
  11. 11.
    Dureau, P, Bonnel, S, Menasche, M, Dufier, JL, Abitbol, M 2001Quantitative analysis of intravitreal injections in the ratCurr Eye Res227477CrossRefPubMedGoogle Scholar
  12. 12.
    Berkelaar, M, Clarke, DB, Wang, YC, Bray, GM, Aguayo, AJ 1994Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult ratsJ Neurosci1443684374PubMedGoogle Scholar
  13. 13.
    Thanos, S, Mey, J, Wild, M 1993Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitroJ Neurosci13455466PubMedGoogle Scholar
  14. 14.
    Villegas-Perez, MP, Vidal-Sanz, M, Rasminsky, M, Bray, GM, Aguayo, AJ 1993Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult ratsJ Neurobiol242336PubMedGoogle Scholar
  15. 15.
    Mansour-Robaey, S, Clarke, DB, Wang, YC, Bray, GM, Aguayo, AJ 1994Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cellsProc Natl Acad Sci USA9116321636PubMedGoogle Scholar
  16. 16.
    Russelakis-Carneiro, M, Silveira, LC, Perry, VH 1996Factors affecting the survival of cat retinal ganglion cells after optic nerve injuryJ Neurocytol25393402CrossRefPubMedGoogle Scholar
  17. 17.
    Domenici, L, Gravina, A, Berardi, N, Maffei, L 1991Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cellsExp Brain Res86579584CrossRefPubMedGoogle Scholar
  18. 18.
    Fortune, B, Bui, BV, Cull, G, Wang, L, Cioffi, GA 2004Inter-ocular and inter-seeion reliability of the electroretinogram photopic negative response (PhNR) in non-human primatesExp Eye Res788393CrossRefPubMedGoogle Scholar
  19. 19.
    Bui, BV, Fortune, B 2003Ganglion cell contributions to the rat full-field electroretinogramJ Physiol555153173CrossRefPubMedGoogle Scholar
  20. 20.
    Viswanathan, S, Frishman, LJ 1997Evidence that negative potentials in the photopic electroretinograms of cats and primates depend upon spiking activity of retinal ganglion cell axonsSoc Neurosci Abstr231024Google Scholar
  21. 21.
    Villegas-Perez, MP, Vidal-Sanz, M, Rasminsky, M, Bray, GM, Aguayo, AJ 1993Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult ratsJ Neurobiol.242336PubMedGoogle Scholar
  22. 22.
    Fukuda, Y 1977A three-group classification of rat retinal ganglion cells: histological and physiological studiesBrain Res119327334CrossRefPubMedGoogle Scholar
  23. 23.
    Mey, J, Thanos, S 1993Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivoBrain Res602304317CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Alcon Research Ltd.Fort WorthUSA
  2. 2.Alcon Research Ltd.Fort WorthUSA

Personalised recommendations