Discrete Event Dynamic Systems

, Volume 26, Issue 1, pp 5–32 | Cite as

Supervisory control synthesis for deterministic context free specification languages

Enforcing controllability least restrictively
  • Anne-Kathrin Schmuck
  • Sven Schneider
  • Jörg Raisch
  • Uwe Nestmann


This paper describes two steps in the generalization of supervisory control theory to situations where the specification is modeled by a deterministic context free language (DCFL). First, it summarizes a conceptual iterative algorithm from Schneider et al. (2014) solving the supervisory control problem for language models. This algorithm involves two basic iterative functions. Second, the main part of this paper presents an implementable algorithm realizing one of these functions, namely the calculation of the largest controllable marked sublanguage of a given DCFL. This algorithm least restrictively removes controllability problems in a deterministic pushdown automaton realizing this DCFL.


Supervisory control theory Supremal controllable sublanguage Minimally restrictive supervisor Deterministic context free languages Pushdown automata 


  1. Chen Y-L, Lin F (2000) Modeling of discrete event systems using finite state machines with parameters. In: Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on, pp 941– 946Google Scholar
  2. Chen Y-L, Lin F (2001) Safety control of discrete event systems using finite state machines with parameters. In: American Control Conference, 2001. Proceedings of the 2001, vol 2, pp 975–980Google Scholar
  3. Griffin C (2006) A note on deciding controllability in pushdown systems. IEEE Trans Autom Control 51(2):334–337CrossRefMathSciNetGoogle Scholar
  4. Griffin C (2007) Decidability and optimality in pushdown control systems: A new approach to discrete event control. PhD thesis, The Pensylvania State UniversityGoogle Scholar
  5. Griffin C (2008) A note on the properties of the supremal controllable sublanguage in pushdown systems. IEEE Trans Autom Control 53(3):826–829CrossRefMathSciNetGoogle Scholar
  6. Hopcroft JE, Ullman JD (1979) Introduction to Automata Theory, languages and computation. Addison-Wesley Publishing companyGoogle Scholar
  7. libFAUDES (2013) Software library for discrete event systemsGoogle Scholar
  8. Masopust T (2012) A note on controllability of deterministic context-free systems. Automatica 48(8):1934–1937CrossRefMathSciNetzbMATHGoogle Scholar
  9. Moor T, Raisch J (1999) Supervisory control of hybrid systems within a behavioural framework. Syst Control Lett 38:157–166CrossRefMathSciNetzbMATHGoogle Scholar
  10. Paulson L, Nipkow T, Wenzel M (2011) Isabelle/HOLGoogle Scholar
  11. Ramadge P, Wonham W (1984) Supervisory control of a class of discrete event processes. In: Bensoussan A, Lions J (eds) Analysis and Optimization of Systems, volume 63 of Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg, pp 475–498Google Scholar
  12. Schmuck A-K, Raisch J (2014) Asynchronous l-complete approximations. Syst Control Lett 73(0):67– 75CrossRefMathSciNetzbMATHGoogle Scholar
  13. Schmuck A-K, Schneider S, Raisch J, Nestmann U (2014) Extending supervisory controller synthesis to deterministic pushdown automata—enforcing controllability least restrictively. In: Proceedings of the 12th IFAC - IEEE International Workshop on Discrete Event Systems, pp 286–293Google Scholar
  14. Schneider S (2014) Behavioral optimizations for deterministic pushdown automata. In: (submitted for publication)Google Scholar
  15. Schneider S, Nestmann U (2014) Enforcing operational properties including blockfreeness for deterministic pushdown automataGoogle Scholar
  16. Schneider S, Schmuck A-K, Raisch J, Nestmann U (2014) Reducing an operational supervisory control problem by decomposition for deterministic pushdown automata. In: Proceedings of the 12th IFAC - IEEE International Workshop on Discrete Event Systems, pp 214–221Google Scholar
  17. Sreenivas RS (1993) On a weaker notion of controllability of a language k with respect to a language l. IEEE Trans Autom Control 38(9):1446–1447CrossRefMathSciNetzbMATHGoogle Scholar
  18. Tabuada P (2009) Verification and Control of Hybrid Systems - A Symbolic Approach, vol 1. Springer Science+Business MediaGoogle Scholar
  19. Wonham WM, Ramadge PJ (1987) On the supremal controllable sublanguage of a given language, vol 25, pp 637–659Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anne-Kathrin Schmuck
    • 1
  • Sven Schneider
    • 2
  • Jörg Raisch
    • 2
    • 3
  • Uwe Nestmann
    • 3
  1. 1.Max Planck Institute for Software SystemsKaiserslauternGermany
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  3. 3.Technische Universität BerlinBerlinGermany

Personalised recommendations