Discrete Event Dynamic Systems

, Volume 26, Issue 2, pp 225–261 | Cite as

Synchronization of a class of cyclic discrete-event systems describing legged locomotion

  • Gabriel A. D. Lopes
  • Bart Kersbergen
  • Bart De Schutter
  • Ton van den Boom
  • Robert Babuška


It has been shown that max-plus linear systems are well suited for applications in synchronization and scheduling, such as the generation of train timetables, manufacturing, or traffic. In this paper we show that the same is true for multi-legged locomotion. In this framework, the max-plus eigenvalue of the system matrix represents the total cycle time, whereas the max-plus eigenvector dictates the steady-state behavior. Uniqueness of the eigenstructure also indicates uniqueness of the resulting behavior. For the particular case of legged locomotion, the movement of each leg is abstracted to two-state circuits: swing and stance (leg in flight and on the ground, respectively). The generation of a gait (a manner of walking) for a multi-legged robot is then achieved by synchronizing the multiple discrete-event cycles via the max-plus framework. By construction, different gaits and gait parameters can be safely interleaved by using different system matrices. In this paper we address both the transient and steady-state behavior for a class of gaits by presenting closed-form expressions for the max-plus eigenvalue and max-plus eigenvector of the system matrix and the coupling time. The significance of this result is in showing guaranteed stable gaits and gait switching, and also a systematic methodology for synthesizing controllers that allow for legged robots to change rhythms fast.


Discrete-event systems Max-plus algebra Coupling time Legged locomotion Gait generation Robotics 

Supplementary material


  1. Baccelli F, Cohen G, Olsder G, Quadrat J (1992) Synchronization and Linearity: an Algebra for Discrete Event Systems. WileyGoogle Scholar
  2. Bede B, Nobuhara H (2009) A novel max-plus algebra based wavelet transform and its applications in image processing. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. San Antonio, Texas, pp 2585–2588Google Scholar
  3. Braker J (1991) Max-algebra modelling and analysis of time-table dependent transportation networks. In: Proceedings of the First European Control Conference, Grenoble, FranceGoogle Scholar
  4. Braker J, Olsder G (1993) The power algorithm in max algebra. Linear Algebra Appl 182:67–89MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cohen A, Rossignol S, Grillner S (1988) Neural control of rhythmic movements in vertebrates. WileyGoogle Scholar
  6. Cohen G, Dubois D, Quadrat J, Viot M (1983) A linear-system-theoretic view of discrete-event processes. In: Proceedings of the 22nd IEEE Conference on Decision and Control. San Antonio , Texas, pp 1039–1044Google Scholar
  7. Cohen G, Dubois D, Quadrat J, Viot M (1985) A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Trans Autom Control 30(3):210–220MathSciNetCrossRefzbMATHGoogle Scholar
  8. Cohen G, Moller P, Quadrat J, Viot M (1989) Algebraic tools for the performance evaluation of discrete event systems. Proc IEEE 77(1):39–58CrossRefGoogle Scholar
  9. Cuninghame-Green R (1961) Process synchronisation in a steelworks – A problem of feasibility. In: Banbury J, Maitland J (eds) Proceedings of the 2nd international conference on operational research. London: English Universities Press, Aix-en-Provence, pp 323–328Google Scholar
  10. Cuninghame-Green R (1962) Describing industrial processes with interference and approximating their steady-state behaviour. Oper Res Q 13(1):95–100CrossRefGoogle Scholar
  11. Cuninghame-Green R (1979) Minimax algebra, lecture notes in economics and mathematical systems, vol 166. Springer-VerlagGoogle Scholar
  12. De Schutter B, van den Boom T (2008) Max-plus algebra and max-plus linear discrete event systems: An introduction. In: Proceedings of the 9th International Workshop on Discrete Event Systems, Göteborg, Sweden, pp 36–42Google Scholar
  13. Dorfler F, Bullo F (2012) Exploring synchronization in complex oscillator networks. In: IEEE Conference on Decision and Control, pp 7157–7170Google Scholar
  14. Full R, Koditschek D (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(23):3325–3332Google Scholar
  15. Gaubert S (1990) An algebraic method for optimizing resources in timed event graphs. In: Bensoussan A, Lions J (eds) Proceedings of the 9th International Conference on Analysis and Optimization of Systems, Berlin, Germany: Springer-Verlag, Antibes, France, Lecture Notes in Control and Information Sciences, vol 144, pp 957–966Google Scholar
  16. Gaubert S (1992) Théorie des systèmes linéaires dans les dioïdes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, FranceGoogle Scholar
  17. Gaubert S (1993) Timed automata and discrete event systems. In: Proceedings of the 2nd European Control Conference, Groningen, The NetherlandsGoogle Scholar
  18. Gaubert S (1994) On rational series in one variable over certain dioids. Technical Report 2162, INRIA, Le Chesnay, FranceGoogle Scholar
  19. Gaubert S, Mairesse J (1998) Task resource models and (max, + ) automata. In: Gunawardena J (ed) Idempotency. Cambridge University PressGoogle Scholar
  20. Gaubert S, Plus M (1997) Methods and applications of (max, + ) linear algebra. In: Proceedings of the symposium on theoretical aspects of computer science. Aachen, Germany, pp 261–282Google Scholar
  21. Giffler B (1960) Mathematical solution of production planning and scheduling problems. Technical Report IBM ASDDGoogle Scholar
  22. Giffler B (1963) Scheduling general production systems using schedule algebra. Nav Res Logisti Q 10(3):237–255CrossRefGoogle Scholar
  23. Giffler B (1968) Schedule algebra: a progress report. Nav Res Logist Q 15 (2):255–280CrossRefGoogle Scholar
  24. Gondran M, Minoux M (1976) Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest, Hungary, pp 333–348Google Scholar
  25. Gondran M, Minoux M (1984) Linear algebra in dioids: a survey of recent results. Ann Discrete Math 19:147–163MathSciNetzbMATHGoogle Scholar
  26. Gondran M, Minoux M (1987) Dioïd theory and its applications. In: Algèbres Exotiques et Systèmes à Evénements Discrets, CNRS/CNET/INRIA Seminar, CNET, Issy-les-Moulineaux, France, pp 57–75Google Scholar
  27. Grillner S (1985) Neurobiological bases of rythmic motor acts in vertebrates. Science 228(4696):143–149CrossRefGoogle Scholar
  28. Grillner S (2011) Control of locomotion in bipeds, tetrapods, and fish. Comprehensive Physiology Supplement 2: Handbook of Physiology, The Nervous System, Motor Control, pp 1179–1236Google Scholar
  29. Haynes G, Cohen F, Koditschek D (2009) Gait transitions for quasi-static hexapedal locomotion on level ground. In: Proceedings of the International Symposium of Robotics Research, Lucerne, Switzerland, pp 105–121Google Scholar
  30. Heidergott B (2000) A characterisation of (max, + )-linear queueing systems. Queueing Syst Theory Appl 35:237–262MathSciNetCrossRefzbMATHGoogle Scholar
  31. Heidergott B, de Vries R (2001) Towards a (max, + ) control theory for public transportation networks. Discret Event Dyn Syst 11:371–398MathSciNetCrossRefzbMATHGoogle Scholar
  32. Heidergott B, Olsder G, van der Woude J (2006) Max plus at work: Modeling and analysis of synchronized systems. KluwerGoogle Scholar
  33. Hildebrand M (1965) Symmetrical gaits of horses. Science 150(3697):701–708CrossRefGoogle Scholar
  34. Holmes P, Full R, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48(2):207–304MathSciNetCrossRefzbMATHGoogle Scholar
  35. Ijspeert A (2008) Central pattern generators for locomotion control in animals and robots: A review. Neural Netw 21(4):642–653CrossRefGoogle Scholar
  36. Karp R (1978) A characterization of the minimum cycle mean in a digraph. Discret Math 23(3):309–311MathSciNetCrossRefzbMATHGoogle Scholar
  37. Klavins E, Koditschek D (2002) Phase regulation of decentralized cyclic robotic systems. Int J Robot Res 21(3):257–275CrossRefGoogle Scholar
  38. Lopes G, Babuška R, De Schutter B, van den Boom T (2009) Switching max-plus models for legged locomotion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp 221–226Google Scholar
  39. Lopes G, Kersbergen B, van den Boom T, De Schutter B, Babuska R (2014) Modeling and control of legged locomotion via switching max-plus models. IEEE Trans Robot 30(3):652–665CrossRefGoogle Scholar
  40. Muybridge E (1901) The Human Figure in Motion. Dover PublicationsGoogle Scholar
  41. Olsder G (1986) On the characteristic equation and minimal realizations for discrete-event dynamic systems. In: Proceedings of the 7th International Conference on Analysis and Optimization of Systems, Antibes, France, Lecture Notes in Control and Information Sciences, vol 83, pp 189–201Google Scholar
  42. Olsder G, Roos C (1988) Cramer and Cayley- Hamilton in the max algebra. Linear Algebra Appl 101:87–108MathSciNetCrossRefzbMATHGoogle Scholar
  43. Olsder G, Resing J, de Vries R, Keane M, Hooghiemstra G (1990) Discrete event systems with stochastic processing times. IEEE Trans Autom Control 35(3):299–302MathSciNetCrossRefzbMATHGoogle Scholar
  44. Peterson J (1981) Petri Net Theory and the Modeling of Systems. Englewood Cliffs, New Jersey: Prentice Hall, Inc.Google Scholar
  45. Raibert M (1986) Legged robots that balance. MIT Press, CambridgezbMATHGoogle Scholar
  46. Raibert M, Jr HB, Chepponis M, Koechling J, Hodgins J, Dustman D, Brennan W, Barrett D, Thompson C, Hebert J, Lee W, Borvansky L (1989) Dynamically stable legged locomotion. Technical Report 1179, MITGoogle Scholar
  47. Saranli U, Buehler M, Koditschek D (2001) RHex: a simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631CrossRefGoogle Scholar
  48. Shedden K (2002) Analysis of cell-cycle gene expression in Saccharomyces cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res 30 (13):2920–2929CrossRefGoogle Scholar
  49. Weingarten J, Groff R, Koditschek D (2004) A framework for the coordination of legged robot gaits. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp 679–686Google Scholar
  50. Yamaguchi S (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412CrossRefGoogle Scholar
  51. Zhou M, DiCesare F, Desrochers A (1992) A hybrid methodology for synthesis of Petri net models for manufacturing systems. IEEE Trans Robot Autom 8(3):350–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gabriel A. D. Lopes
    • 1
  • Bart Kersbergen
    • 1
  • Bart De Schutter
    • 1
  • Ton van den Boom
    • 1
  • Robert Babuška
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations