Discrete Event Dynamic Systems

, Volume 26, Issue 2, pp 351–366 | Cite as

On just-in-time control of timed event graphs with input constraints: a semimodule approach

Article

Abstract

Timed event graph (TEG) is a subclass of timed Petri nets that can be used to model discrete event systems subject to synchronization and time delay phenomena. Just-in-Time control in TEG can be defined as the determination of latest admission date of resources in order to respect a given demand profile. In this paper this kind of control problem is studied in situations in which the input dynamics are constrained to a given semimodule (a kind of linear vector space in a semiring context). We give necessary and sufficient conditions to solve the problem and present two computational methods to solve it. Application examples are presented to illustrate the applicability of the results.

Keywords

Timed petri nets Max-plus algebra Residuation theory Semimodule Just-in-time control 

References

  1. Allamigeon X, Gaubert S, Goubault E (2008) Inferring min and max invariants using max-plus polyhedra. In: Proceedings of the 15th International Static Analysis Symposium (SAS’08), Springer LNCS, vol 5079, pp 189–204Google Scholar
  2. Amari S, Demongodin I, Loiseau J (2005) Control of linear min-plus systems under temporal constraints. In: 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05). Seville, Spain, pp 7738–7743Google Scholar
  3. Baccelli F, Cohen G, Olsder G, Quadrat J (1992) Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New YorkMATHGoogle Scholar
  4. Butkovic P, Hegedüs G (1984) An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekon. Mat. Obzor 20:203–214MathSciNetMATHGoogle Scholar
  5. Cohen G, Gaubert S, Quadrat J (2004) Duality and separation theorems in idempotent semimodules. Linear Algebra Appl 379:395–422MathSciNetCrossRefMATHGoogle Scholar
  6. Cottenceau B, Hardouin L, Boimond J-L, Ferrier J-L (2001) Model Reference Control for Timed Event Graphs in Dioid. Automatica 37:1451–1458CrossRefMATHGoogle Scholar
  7. Cuninghame-Green R A, Butkovic P (2003) The equation A ⊗x=B ⊗y over (max,+). Theor Comput Sci 293:3–12MathSciNetCrossRefMATHGoogle Scholar
  8. De Schutter B (2001) Model predictive control for max-plus-linear discrete event systems. Automatica 37: 1049–1056CrossRefMATHGoogle Scholar
  9. Garcia C E, Prett D M, Morari M (1989) Model predictive control: Theory and pratice - a survey. Automatica 25(3):335–348CrossRefMATHGoogle Scholar
  10. Garey M R, Johnson D S (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and CompanyGoogle Scholar
  11. Gaubert S (1992) Théorie des systèmes linéaires dans les dioïdes. Thèse de doctorat, Ecole des Mines de, ParisGoogle Scholar
  12. Gondran M, Minoux M (2010) Graphs, Dioids and Semirings: New Models and Algorithms. SpringerGoogle Scholar
  13. Hardouin L, Cottenceau B, Lhommeau M, Corronc E L (2009) Interval systems over idempotent semiring. Linear Algebra Appl 431(5-7):855–862MathSciNetCrossRefMATHGoogle Scholar
  14. Hardouin L, Lhommeau M, Shang Y (2011) Towards geometric control of max-plus linear systems with applications to manufacturing systems. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’11). Orlando, FloridaGoogle Scholar
  15. Houssin L, Lahaye S, Boimond J (2007) Just in time control of constrained (max,+)-linear systems. Discrete Event Dynamic Systems. Theory Appl 17(2):159–178MathSciNetMATHGoogle Scholar
  16. Houssin L, Lahaye S, Boimond J L (2012) Control of (max,+)-linear systems minimizing delays. In: Discrete Event Dynamic Systems. SpringerGoogle Scholar
  17. Katz R D (2007) Max-plus (A, B)-invariant spaces and control of timed discrete-event systems. IEEE Trans Autom Control 52(2):229–241MathSciNetCrossRefGoogle Scholar
  18. Maia C A, Andrade C R, Hardouin L (2011) On the control of max-plus linear system subject to state restriction. Automatica 47(5):988–992MathSciNetCrossRefMATHGoogle Scholar
  19. Maia C A, Hardouin L, Mendes R S, Loiseau J (2011) A super-eigenvector approach to control constrained max-plus linear systems: In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’11). Orlando, FloridaGoogle Scholar
  20. Maia C A, Hardouin L, Santos-Mendes R, Cottenceau B (2003) Optimal closed-loop of timed event graphs in dioids. IEEE Trans Autom Control 48(12):2284–2287MathSciNetCrossRefGoogle Scholar
  21. Menguy E, Boimond J, Hardouin L, Ferrier J (2000) Just-in-time control of timed event graphs update of reference input, presence of uncontrollable input. IEEE Trans Autom Control 45(11):2155–2158MathSciNetCrossRefMATHGoogle Scholar
  22. Murata T (1989) Petri nets : properties, analysis and applications. Proceedings of the IEEE 77 (4): 541–580CrossRefGoogle Scholar
  23. Ouerghi I, Hardouin L (2006) A precompensator synthesis for p-temporal event graphs, In: POSTA’06 - Springer LNCS. Grenoble, France, p 341MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guilherme Gomes da Silva
    • 1
  • Carlos Andrey Maia
    • 1
  1. 1.Programa de Pós-Graduação em Engenharia ElétricaUniversidade Federal de Minas Gerais (UFMG)PampulhaBrazil

Personalised recommendations