Discrete Event Dynamic Systems

, Volume 22, Issue 2, pp 163–178 | Cite as

Dependability analysis of DES based on MARTE and UML state machines models

  • José MerseguerEmail author
  • Simona Bernardi


UML (Unified Modeling Language) is a standard design notation which offers the state machines diagram to specify reactive software systems. The “Modeling and Analysis of Real-Time and Embedded systems” profile (MARTE) enables UML with capabilities for performance analysis. MARTE has been specialized in a “Dependability Analysis and Modeling” profile (DAM), then providing UML with dependability assets. In this work, we propose an approach for the automatic transformation of UML-DAM models into Deterministic and Stochastic Petri nets and the subsequent dependability analysis.


Dependability modeling and analysis MARTE UML state machines Deterministic and Stochastic Petri nets 



The authors thank the anonymous reviewers for their valuable help to improve this work.


  1. Ajmone Marsan M, Chiola G (1987) On Petri nets with deterministic and exponentially distributed firing times. In: Advances in Petri Nets 1987, covers the 7th European workshop on applications and theory of Petri Nets. Springer, London, pp 132–145Google Scholar
  2. Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and secure computing. IEEE Trans Depend Secure Comput 1(1):11–33. doi:10.1109/TDSC.2004.2 CrossRefGoogle Scholar
  3. Basile F, Chiacchio P, Grosso DD (2008) Modelling automation systems by UML and Petri nets. In: Proceedings of of the 9th international workshop on discrete event systems (WODES 2008), IEEE Explore, pp 308–313Google Scholar
  4. Bernardi S, Merseguer J, Petriu D (2009) A dependability profile within MARTE. J Softw Syst Model. doi: 10.1007/s10270-009-0128-1 Google Scholar
  5. Bondavalli A, Dal Cin M, Latella D, Majzik I, Pataricza A, Savoia G (2001) Dependability analysis in the early phases of UML-based system design. Int J Comput Syst Sci Eng 16(5):265–275Google Scholar
  6. Dingel J, Rudie K, Dragert C (2009) Bridging the gap: Discrete-event systems for software engineering. In: Canadian conference on computer science & software engineering (C3S2E 2009). ACM, Montreal, pp 67–71Google Scholar
  7. Donatelli S, Franceschinis G (1996) The PSR methodology: integrating hardware and software models. In: Billington J, Reisig W (eds) Application and theory of Petri Nets, LNCS, vol 1091. Springer, New York, pp 133–152Google Scholar
  8. GISED group (2006) Universidad de Zaragoza
  9. GISED group (2011) Universidad de Zaragoza
  10. Goseva-Popstojanova K, Trivedi KS (2000) Stochastic modeling formalisms for dependability, performance and performability. In: Haring G, Lindemann C, Reiser M (eds) Performance evaluation: origins and directions, Lecture notes in computer science, vol 1769. Springer, New York, pp 403–422CrossRefGoogle Scholar
  11. Huszerl G, Majzik I, Pataricza A, Kosmidis K, Dal Cin M (2002) Quantitative analysis of UML statechart models of dependable systems. Comput J 45(3):260–277zbMATHCrossRefGoogle Scholar
  12. Lilius J, Paltor IP (1999) The semantics of UML state machines. Tech. rep., Turku Centre for Computer Science, Åbo Akademi University, Turku (Finland)Google Scholar
  13. MARTE (2008) A UML profile for MARTE: modeling and analysis of real-time embedded systems, Object Management Group. Document Number: ptc/2008-06-09Google Scholar
  14. Merseguer J (2003) Software performance engineering based on UML and Petri nets. PhD thesis, University of Zaragoza, SpainGoogle Scholar
  15. Mustafiz S, Sun X, Kienzle J, Vangheluwe H (2008) Model-driven assessment of system dependability. Softw Syst Model 7(4):487–502CrossRefGoogle Scholar
  16. Papyrus (2010) CEA LIST
  17. Risco-Martin J, Mittal S, Zeigler B, de la Cruz J (2007) From UML state charts to DEVS state machines using XML. In: Workshop on multi-paradigm modeling within MoDELS, Nashville, Tennessee (USA), pp 35–48Google Scholar
  18. Trowitzsch J, Jerzynek D, Zimmermann A (2007) A toolkit for performability evaluation based on stochastic UML state machines. In: Proceedings of the 2nd international conference on performance evaluation methodolgies and tools (VALUETOOLS 2007). ACM, Nantes, p 30Google Scholar
  19. UML2 (2010) UML Unified modeling language: superstructure. Object Management Group,, version 2.3

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Group of Discrete Events Systems Engineering, Departamento de Informática e Ingeniería de SistemasUniversidad de ZaragozaZaragozaSpain
  2. 2.Centro Universitario de la DefensaAcademia General MilitarZaragozaSpain

Personalised recommendations