Advertisement

Discrete Event Dynamic Systems

, Volume 16, Issue 3, pp 327–352 | Cite as

Extremal Throughputs in Free-Choice Nets

  • Anne Bouillard
  • Bruno Gaujal
  • Jean Mairesse
Article

Abstract

We give a method to compute the throughput in a timed live and bounded free-choice Petri net under a total allocation (i.e. a 0–1 routing). We also characterize and compute the conflict-solving policies that achieve the smallest throughput in the special case of a 1-bounded net. They do not correspond to total allocations, but still have a small period.

Keywords

Free-choice Petri nets Timed and routed nets Throughput 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccelli F, Cohen G, Olsder G, Quadrat J (1992). Synchronization and Linearity. Wiley, New York.zbMATHGoogle Scholar
  2. Bouillard A, Gaujal B, Mairesse J (2005). Extremal throughputs in free-choice nets. In Ciardo G Darondeau P (eds), 26th International Conference On Application and Theory of Petri Nets and Other Models of Concurrency, LNCS. Springer-Berlin Heidelberg New York.Google Scholar
  3. Carlier J, Chretienne P (1988). Timed Petri net schedules. In Advances in Petri Nets, number 340 in LNCS, pp. 62–84. Springer-Berlin Heidelberg New York.Google Scholar
  4. Chretienne P (1983). Les Réseaux de Petri Temporisés. PhD thesis, Université Paris VI, Paris.Google Scholar
  5. Cohen G, Dubois D, Quadrat J, Viot M (1985). A linear system–theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Trans Automat Contr 30:210–220.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Cohen G, Gaubert S, Quadrat J (1998). Algebraic system analysis of timed Petri nets. In Gunawardena J (ed), Idempotency. Cambridge University Press.Google Scholar
  7. Desel J, Esparza J (1995). Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Comp. Sc. Cambridge Univ. Press.Google Scholar
  8. Gaubert S, Mairesse J (1999). Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans Automat Contr 44(4):683–698.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Gaujal B, Giua A (2004). Optimal stationary behavior for a class of timed continuous Petri nets. Automatica 40(9):1505–1516.zbMATHMathSciNetCrossRefGoogle Scholar
  10. Gaujal B, Haar S, Mairesse J (2003). Blocking a transition in a free choice net and what it tells about its throughput. J Comput Syst Sci 66(3):515–548.zbMATHMathSciNetCrossRefGoogle Scholar
  11. Mairesse J, Vuillon L (1998). Optimal sequences in a heap model with two pieces. Liafa research report 98/09, Université Paris 7.Google Scholar
  12. Recalde L, Silva M (2001). Petri net fluidification revisited: Semantics and steady state. European Journal of Automation APII-JESA 35(4):435–449.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.LIP UMR CNRS, ENS Lyon, INRIAUniversité Claude Bernard Lyon 1, École Normale Supérieure de LyonLyonFrance
  2. 2.Lab. ID-MAG, INRIA-CNRS-UJF-INPG 51MontbonnotFrance
  3. 3.CNRS-Université Paris 7, LIAFA, Case 7014ParisFrance

Personalised recommendations