Discrete Event Dynamic Systems

, Volume 16, Issue 3, pp 327–352 | Cite as

Extremal Throughputs in Free-Choice Nets

  • Anne Bouillard
  • Bruno Gaujal
  • Jean Mairesse


We give a method to compute the throughput in a timed live and bounded free-choice Petri net under a total allocation (i.e. a 0–1 routing). We also characterize and compute the conflict-solving policies that achieve the smallest throughput in the special case of a 1-bounded net. They do not correspond to total allocations, but still have a small period.


Free-choice Petri nets Timed and routed nets Throughput 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baccelli F, Cohen G, Olsder G, Quadrat J (1992). Synchronization and Linearity. Wiley, New York.zbMATHGoogle Scholar
  2. Bouillard A, Gaujal B, Mairesse J (2005). Extremal throughputs in free-choice nets. In Ciardo G Darondeau P (eds), 26th International Conference On Application and Theory of Petri Nets and Other Models of Concurrency, LNCS. Springer-Berlin Heidelberg New York.Google Scholar
  3. Carlier J, Chretienne P (1988). Timed Petri net schedules. In Advances in Petri Nets, number 340 in LNCS, pp. 62–84. Springer-Berlin Heidelberg New York.Google Scholar
  4. Chretienne P (1983). Les Réseaux de Petri Temporisés. PhD thesis, Université Paris VI, Paris.Google Scholar
  5. Cohen G, Dubois D, Quadrat J, Viot M (1985). A linear system–theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Trans Automat Contr 30:210–220.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Cohen G, Gaubert S, Quadrat J (1998). Algebraic system analysis of timed Petri nets. In Gunawardena J (ed), Idempotency. Cambridge University Press.Google Scholar
  7. Desel J, Esparza J (1995). Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Comp. Sc. Cambridge Univ. Press.Google Scholar
  8. Gaubert S, Mairesse J (1999). Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans Automat Contr 44(4):683–698.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Gaujal B, Giua A (2004). Optimal stationary behavior for a class of timed continuous Petri nets. Automatica 40(9):1505–1516.zbMATHMathSciNetCrossRefGoogle Scholar
  10. Gaujal B, Haar S, Mairesse J (2003). Blocking a transition in a free choice net and what it tells about its throughput. J Comput Syst Sci 66(3):515–548.zbMATHMathSciNetCrossRefGoogle Scholar
  11. Mairesse J, Vuillon L (1998). Optimal sequences in a heap model with two pieces. Liafa research report 98/09, Université Paris 7.Google Scholar
  12. Recalde L, Silva M (2001). Petri net fluidification revisited: Semantics and steady state. European Journal of Automation APII-JESA 35(4):435–449.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.LIP UMR CNRS, ENS Lyon, INRIAUniversité Claude Bernard Lyon 1, École Normale Supérieure de LyonLyonFrance
  2. 2.Lab. ID-MAG, INRIA-CNRS-UJF-INPG 51MontbonnotFrance
  3. 3.CNRS-Université Paris 7, LIAFA, Case 7014ParisFrance

Personalised recommendations