Differential Equations

, Volume 41, Issue 9, pp 1213–1224 | Cite as

A Generalization of the Neumann Problem for the Helmholtz Equation Outside Cuts on the Plane

  • P. A. Krutitskii
  • V. V. Kolybasova
Partial Differential Equations


Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Neumann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krutitskii, P.A., Appl. Math. Letters, 2000, vol. 13, pp. 71–76.MATHMathSciNetGoogle Scholar
  2. 2.
    Lifanov, I.K., Metod singulyarnykh integral'nykh uravnenii i chislennyi eksperiment v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln (The Method of Singular Integral Equations and Numerical Experiment in Mathematical Physics, Aerodynamics, Elasticity, and Wave Diffraction), Moscow: Yanus, 1995.Google Scholar
  3. 3.
    Krutitskii, P.A., Zh. Vychislit. Mat. Mat. Fiz., 1994, vol. 34, no.8–9, pp. 1237–1257.MATHMathSciNetGoogle Scholar
  4. 4.
    Krutitskii, P.A., Zh. Vychislit. Mat. Mat. Fiz., 1994, vol. 34, no.11, pp. 1652–1665.MATHMathSciNetGoogle Scholar
  5. 5.
    Colton, D. and Kress, R., Integral Equation Methods in Scattering Theory, New York: Wiley, 1983. Translated under the title Metody integral'nykh uravnenii v teorii rasseyaniya, Moscow: Mir, 1987.Google Scholar
  6. 6.
    Krutitskii, P.A., Ann. Univ. Ferrara, 2001, vol. 47, pp. 285–296.MATHMathSciNetGoogle Scholar
  7. 7.
    Samarskii, A.A. and Andreev, V.B., Raznostnye metody dlya ellipticheskikh uravnenii (Difference Methods for Elliptic Equations), Moscow: Nauka, 1976.Google Scholar
  8. 8.
    Friedman, A. and Vogelius, M., Indiana Univ. Math. J., 1989, vol. 38, pp. 497–525.MathSciNetGoogle Scholar
  9. 9.
    Muskhelishvili, N.I., Singulyarnye integral'nye uravneniya (Singular Integral Equations), Moscow, 1968.Google Scholar
  10. 10.
    Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow, 1981.Google Scholar
  11. 11.
    Smirnov, V.I., Kurs vysshei matematiki (Course of Higher Mathematics), Moscow, 1951, vol. 4.Google Scholar
  12. 12.
    Nikiforov, A.F. and Uvarov, V.B., Spetsial'nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow, 1984.Google Scholar
  13. 13.
    Krutitskii, P.A., Math. Meth. Appl. Sci., 1995, vol. 18, pp. 897–925.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional'nogo analiza (Elements of Function Theory and Functional Analysis), Moscow, 1981.Google Scholar
  15. 15.
    Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Moscow, 1977, vol. 1, p. 915.Google Scholar
  16. 16.
    Funktsional'nyi analiz (Functional Analysis), Krein, S.G., Ed., Moscow, 1964.Google Scholar
  17. 17.
    Kantorovich, A.V. and Akilov, G.P., Funktsional'nyi analiz (Functional Analysis), Moscow, 1984.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • P. A. Krutitskii
    • 1
  • V. V. Kolybasova
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations