Advertisement

On some conjectures about optimal ternary cyclic codes

  • Yan Liu
  • Xiwang CaoEmail author
  • Wei Lu
Article
  • 18 Downloads

Abstract

Cyclic codes are a subclass of linear codes and have efficient encoding and decoding algorithms over finite fields, so they are widely used in many areas such as consumer electronics, data storage systems and communication systems. In this paper, by considering the solutions of certain equations over finite fields, one of the nine conjectures proposed by Ding and Helleseth about optimal cyclic codes in (IEEE Trans Inf Theory 59(9):5898–5904, 2013) is settled. In addition, we make progress toward other two conjectures.

Keywords

Cyclic code Optimal code Sphere packing bound 

Mathematics Subject Classification

94B15 11T71 

Notes

Acknowledgements

The authors are very grateful to the three anonymous reviewers, the Editor in Chief and CE, Prof. Tor Helleseth, for their comments which improved the presentation and quality of this paper.

References

  1. 1.
    Baumert L.D., McEliece R.J.: Weights of irreducible cyclic codes. Inf. Control 20(2), 158–175 (1972).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).CrossRefGoogle Scholar
  3. 3.
    Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55(3), 955–960 (2009).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ding C., Helleseth T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59(9), 5898–5904 (2013).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ding C., Liu Y., Ma C., Zeng L.: The weight distributions of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 57(12), 8000–8006 (2011).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ding C., Li C., Li N., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fan C., li N., Zhou Z.: A class of optimal ternary cyclic codes and their duals. Finite Fields Appl. 37, 193–202 (2016).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Feng T.: On cyclic codes of length \(2^{2^{r}}-1\) with two zeros whose dual codes have three weights. Des. Codes Crypogr. 62, 253–258 (2012).CrossRefGoogle Scholar
  9. 9.
    Feng K., Luo J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huffman W., Pless V.: Foundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefGoogle Scholar
  11. 11.
    Li C., Yue Q.: Weight distributions of two classes of cyclic codes with respect to two distinct order elements. IEEE Trans. Inf. Theory 60(1), 296–303 (2014).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li N., Li C., Helleseth T., Ding C., Tang X.: Optimal ternary cyclic codes with minimun distance four and five. Finite Fields Appl. 30, 100–120 (2014).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, N., Zhou, Z., Helleseth, T.: On a conjecture about a class of optimal ternary cyclic codes. In: Proceedings of the 2015 seventh International Workshop on Signal, Signal Design and its Applications in Communications (IWSDA). (2015).  https://doi.org/10.1109/IWSDA.2015.7458415..
  14. 14.
    Liu Y., Yan H., Liu C.: A class of six-weight cyclic codes and their weight distribution. Des. Codes Crypogr. 77(1), 1–9 (2015).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, L., Liu, L., Zhu, S.: Several classes of optimal ternary cyclic codes. arXiv: 1701.01247.
  16. 16.
    Luo J., Feng K.: Cyclic codes and sequences form generalized Coulter–Matthews function. IEEE Trans. Inf. Theory 54(12), 5345–5353 (2008).CrossRefGoogle Scholar
  17. 17.
    Luo J., Feng K.: On the weight distribution of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma C., Zeng L., Liu Y., Feng D., Ding C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shi M., Zhang Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39, 159–178 (2016).MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shi M., Qian L., Sok L., Solé P.: On constacyclic codes over \({\mathbb{Z}}_{4}[u]/<u^{2}-1>\) and their Gray images. Finite Fields Appl. 45, 86–95 (2017).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang L., Wu G.: Several classes of optimal ternary cyclic codes with minimal distance four. Finite Fields Appl. 40, 126–137 (2016).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xiong M., Li N.: Optimal cyclic codes with generalized Niho-type zeros and the weight distribution. IEEE Trans. Inf. Theory 61(9), 4914–4922 (2015).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xu G., Cao X., Xu S.: Optimal \(p\)-ary cyclic codes with minimum distance four from monomials. Cryptogr. Commun. 8(4), 541–554 (2016).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yan H., Zhou Z., Du X.: A family of optimal ternary cyclic codes from the Niho-type exponent. Finite Fields Appl. 54, 101–112 (2018).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zeng X., Hu L., Jiang W.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 126–137 (2010).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhou Z., Ding C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.College of Mathematics and PhysicsYancheng Institute of TechnologyYanchengPeople’s Republic of China
  3. 3.School of MathematicsSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations