Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 12, pp 3063–3075 | Cite as

Linear codes with small hulls in semi-primitive case

  • Claude Carlet
  • Chengju LiEmail author
  • Sihem Mesnager
Article
  • 110 Downloads

Abstract

The hull of a linear code is defined to be the intersection of the code and its dual, and was originally introduced to classify finite projective planes. The hull plays an important role in determining the complexity of algorithms for checking permutation equivalence of two linear codes and computing the automorphism group of a linear code. It has been shown that these algorithms are very effective in general if the size of the hull is small. It is clear that the linear codes with the smallest hull are LCD codes and with the second smallest hull are those with one-dimensional hull. In this paper, we employ character sums in semi-primitive case to construct LCD codes and linear codes with one-dimensional hull from cyclotomic fields and multiplicative subgroups of finite fields. Some sufficient and necessary conditions for these codes are obtained, where prime ideal decompositions of prime p in cyclotomic fields play a key role. In addition, we show the non-existence of these codes in some cases.

Keywords

Linear code Hull LCD code Cyclotomic field Character sum 

Mathematics Subject Classification

94B05 11T24 11T71 

Notes

Acknowledgements

The authors are very grateful to the editor and the reviewers for their detailed comments and suggestions that much improved the presentation and quality of this paper. The work was supported by the National Natural Science Foundation of China under Grant 11701179, the Shanghai Chenguang Program under Grant 18CG22, the Shanghai Sailing Program under Grant 17YF1404300, the Foundation of State Key Laboratory of Integrated Services Networks under Grant ISN20-02, and the SECODE project in the scope of the CHIST-ERA Program.

References

  1. 1.
    Assmus E.F., Key Jr. J.D.: Affine and projective planes. Discret. Math. 83, 161–187 (1990).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berndt B., Evans R., Williams K.: Gauss and Jacobi Sums. Wiley, New York (1997).zbMATHGoogle Scholar
  3. 3.
    Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer, New York (2012).CrossRefGoogle Scholar
  4. 4.
    Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. In: E.R. Pinto et al. (eds.), Coding Theory and Applications. CIM Series in Mathematical Sciences, vol. 3, pp. 97–105, Springer (2014). J. Adv. Math. Commun. 10(1), 131–150 (2016).Google Scholar
  5. 5.
    Carlet C., Güneri C., Mesnager S., Özbudak F.: Construction of some codes suitable for both side channel and fault injection attacks. In: Budaghyan L., Rodrguez-Henrquez F. (eds.) Arithmetic of Finite Fields, WAIFI 2018. LNCS, vol. 11321, pp. 95–107. Springer, Cham (2018).zbMATHGoogle Scholar
  6. 6.
    Carlet C., Güneri C., Özbudak F., Özkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64(10), 6583–6589 (2018).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \({\mathbb{F}}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).CrossRefGoogle Scholar
  8. 8.
    Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Carlet C., Mesnager S., Tang C., Qi Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 2605–2618 (2018).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Carlet C., Mesnager S., Tang C., Qi Y.: On \(\sigma \)-LCD codes. IEEE Trans. Inf. Theory 65(3), 1694–1704 (2019).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen B., Liu H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313(4), 434–446 (2013).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dougherty S.T., Kim J.-L., Özkaya B., Sok L., Solè P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2/3), 116–128 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Esmaeili M., Yari S.: On complementary-dual quasi-cyclic codes. Finite Fields Appl. 15, 375–386 (2009).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ghinelli D., Key J.D., McDonough T.P.: Hulls of codes from incidence matrices of connected regular graphs. Des. Codes Cryptogr. 70, 35–54 (2014).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de (2019). Accessed 2 Jan 2019.
  17. 17.
    Guenda K., Gulliver T.A., Jitman S., Satanan T.: Linear \(\ell \)-intersection pairs of codes and their applications. arXiv:1810.05103 (2018).
  18. 18.
    Güneri C., Özkaya B., Solè P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory, GTM 84, 2nd edn. Springer, New York (1990).CrossRefGoogle Scholar
  20. 20.
    Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Leon J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–511 (1982).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Leon J.: Permutation group algorithms based on partition, I: Theory and algorithms. J. Symb. Comput. 12, 533–583 (1991).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li C., Zeng P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li C., Yue Q., Li F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li S., Li C., Ding C., Liu H.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).MathSciNetzbMATHGoogle Scholar
  27. 27.
    Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Boston (1983).zbMATHGoogle Scholar
  28. 28.
    Luo G., Cao X., Chen X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mesnager S., Tang C., Qi Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018).MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pang B., Zhu S., Sun Z.: On LCD negacyclic codes over finite fields. J. Syst. Sci. Complex. 34(4), 1065–1077 (2018).MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sangwisut E., Jitman S., Ling S., Udomkavanich P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015).MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sendrier N.: On the dimension of the hull. SIAM J. Discret. Math. 10(2), 282–293 (1997).MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sendrier N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sendrier N., Skersys G.: On the computation of the automorphism group of a linear code. In: Proceedings of IEEE ISIT’2001, vol. 13, Washington, DC (2001).Google Scholar
  36. 36.
    Shi X., Yue Q., Yang S.: New LCD MDS codes constructed from generalized Reed-Solomon codes. J. Algebra Appl. 18, 1950150 (2018).MathSciNetCrossRefGoogle Scholar
  37. 37.
    Skersys G.: The average dimension of the hull of cyclic codes. Discret. Appl. Math. 128(1), 275–292 (2003).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wu Y., Yue Q., Zhu X., Yang S.: Weight enumerators of reducible cyclic codes and their dual codes. Discret. Math. 342(3), 671–682 (2019).MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yan H., Liu H., Li C., Yang S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018).MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yang X., Massey J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126(1–3), 391–393 (1994).MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yang S., Yao Z.: Complete weight enumerators of a class of linear codes. Discret. Math. 340(4), 729–739 (2017).MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yang S., Yao Z., Zhao C.: The weight enumerator of the duals of a class of cyclic codes with three zeros. Appl. Algebra Eng. Commun. Comput. 26(4), 347–367 (2015).MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yang S., Yao Z., Zhao C.: The weight distributions of two classes of \(p\)-ary cyclic codes with few weights. Finite Fields Appl. 44, 76–91 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claude Carlet
    • 1
    • 2
    • 3
  • Chengju Li
    • 4
    • 5
    Email author
  • Sihem Mesnager
    • 1
    • 2
    • 6
  1. 1.Department of MathematicsUniversity of Paris VIIISaint-DenisFrance
  2. 2.University of Paris XIII, CNRS, LAGA UMR 7539, Sorbonne Paris CitéVilletaneuseFrance
  3. 3.University of BergenBergenNorway
  4. 4.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  5. 5.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  6. 6.Telecom ParisTechParisFrance

Personalised recommendations