Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 4, pp 931–953 | Cite as

Cubic surfaces over small finite fields

  • Anton BettenEmail author
  • Fatma Karaoglu
Article
  • 36 Downloads
Part of the following topical collections:
  1. Special Issue: Finite Geometries

Abstract

In the 1960s, Hirschfeld embarked on a program to classify cubic surfaces with 27 lines over finite fields. This work is a contribution to this problem. We develop an algorithm to classify surfaces with 27 lines over a finite field using the classical theory of double-sixes. This algorithm is used to classify these surfaces over all fields of order q at most 97. We then construct a family of cubic surfaces over finite fields of odd order. The generic surfaces in this family have six Eckardt points and they are invariant under a symmetric group of degree four. The family turns out to be isomorphic to the example of a family of cubic surface given over the real numbers by Hilbert and Cohn-Vossen.

Keywords

Geometry Cubic surface Finite field Classification Double-six 

Mathematics Subject Classification

05-04 05B25 14J10 51E25 68R05 

Notes

Acknowledgements

Both authors thank James Hirschfeld for helpful conversations. The first author thanks Steve Linton for helpful remarks about the action of the general linear group on the wedge product. Finally, we thank all three reviewers of this paper for the helpful comments. The paper has been improved greatly because of these comments.

References

  1. 1.
    Betten A.: Rainbow cliques and the classification of small BLT-sets. In: ISSAC 2013: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pp. 53–60. ACM, New York (2013).Google Scholar
  2. 2.
    Betten A.: Classifying discrete objects with Orbiter. ACM Commun. Comput. Algebra 47(3/4), 183–186 (2014).CrossRefGoogle Scholar
  3. 3.
    Betten A.: Orbiter: a program to classify discrete objects (2018). https://github.com/abetten/orbiter.
  4. 4.
    Betten, A.: Classifying cubic surfaces over finite fields using orbiter. In: Davenport J.H., Kauers M., Labahn G., Urban J. (eds.) ICMS 2018: Proceedings of the International Congress on Mathematical Software, pp. 55–61. Springer, Berlin (2018).Google Scholar
  5. 5.
    Betten A.: How fast can we compute orbits of groups? In: Davenport J.H., Kauers M., Labahn G., Urban J. (eds.) ICMS 2018: Proceedings of the International Congress on Mathematical Software, pp. 62–70. Springer, Berlin (2018).Google Scholar
  6. 6.
    Betten A., Hirschfeld J.W.P., Karaoglu F.: Classification of cubic surfaces with twenty-seven lines over the finite field of order thirteen. Eur. J. Math. 4(1), 37–50 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brauner H.: Vorlesung Liniengeometrie, Lecture Notes, Technical University of Vienna (1971/72) (in German).Google Scholar
  8. 8.
    Eckardt F.E.: Ueber diejenigen Flächen dritter Grades, auf denen sich drei gerade Linien in einem Punkte schneiden. Math. Ann. 10, 227–272 (1876).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hilbert D., Cohn-Vossen S.: Anschauliche Geometrie. Wissenschaftliche Buchgesellschaft, Darmstadt, 1973. Mit einem Anhang: “Einfachste Grundbegriffe der Topologie” von Paul Alexandroff, Reprint der 1932 Ausgabe.Google Scholar
  10. 10.
    Hirschfeld J.W.P.: The double-six of lines over \(PG(3,4)\). J. Aust. Math. Soc. 4, 83–89 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hirschfeld J.W.P.: The geometry of cubic surfaces, and Graces extension of the double-six, over finite fields, Ph.D. thesis, University of Edinburgh (1965).Google Scholar
  12. 12.
    Hirschfeld J.W.P.: Classical configurations over finite fields. I. The double- six and the cubic surface with \(27\) lines. Rend. Mat. e Appl. 5(26), 115–152 (1967).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. Oxford University Press, New York (1985).Google Scholar
  14. 14.
    Holt D.F., Eick B., O’Brien E.A.: Handbook of Computational Group Theory. Discrete Mathematics and Its Applications. Chapman & Hall, Boca Raton (2005).zbMATHGoogle Scholar
  15. 15.
    Karaoglu F.: The cubic surfaces with twenty-seven lines over field fields. Ph.D. thesis, University of Sussex (2018).Google Scholar
  16. 16.
    Lüneburg H.: Translation Planes. Springer, Berlin (1980).CrossRefzbMATHGoogle Scholar
  17. 17.
    Plesken W.: Counting with groups and rings. J. Reine Angew. Math. 334, 40–68 (1982).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Praeger C.E., Schneider C.: Permutation Groups and Cartesian Decompositions. London Mathematical Society Lecture Note Series, vol. 449. Cambridge University Press, Cambridge (2018).CrossRefGoogle Scholar
  19. 19.
    Schläfli L.: An attempt to determine the twenty-seven lines upon a surface of the third order and to divide such surfaces into species in reference to the reality of the lines upon the surface. Q. J. Math. 2, 55110 (1858).Google Scholar
  20. 20.
    Seress Á.: Permutation Group Algorithms. Cambridge Tracts in Mathematics, vol. 152. Cambridge University Press, Cambridge (2003).CrossRefGoogle Scholar
  21. 21.
    The GAP Group: GAP: Groups, Algorithms, and Programming, Version 4.8.7 (2017).Google Scholar
  22. 22.
    Wielandt H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York (1964).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsColorado State UniversityFort CollinsUSA
  2. 2.Department of MathematicsUniversity of SussexBrightonUK

Personalised recommendations