Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 2–3, pp 495–507 | Cite as

Types of spreads and duality of the parallelisms of PG(3, 5) with automorphisms of order 13

  • Svetlana TopalovaEmail author
  • Stela Zhelezova
Article
  • 14 Downloads
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography

Abstract

A spread is a set of lines of PG(nq) which partition the point set. A parallelism is a partition of the set of all lines by spreads. Empirical data on parallelisms is of interest both from theoretical point of view, and for different applications. Only 51 explicit examples of parallelisms of PG(3, 5) have been known. We construct all (321) parallelisms of PG(3, 5) with automorphisms of order 13 and classify them by the order of their automorphism group, the number of reguli in their spreads and duality. There are no regular ones among them. There are 19 self-dual parallelisms. We also claim that PG(3, 5) has no point-transitive parallelisms.

Keywords

Spread Parallelism Authomorphism Self-dual parallelisms 

Mathematics Subject Classification

51E23 51E10 05B25 

Notes

Acknowledgements

We are grateful to professor A. Betten from Colorado State University for focusing our attention to invariant 2, and to the anonymous referees whose remarks contributed to a better presentation and motivation of the results.

References

  1. 1.
    Baker R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976).zbMATHGoogle Scholar
  2. 2.
    Baker R.D., Ebert G.L.: Construction of two—dimensional flag—transitive planes. Geom. Dedic. 27, 9–14 (1988).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baker R.D., Ebert G.L.: Regulus-free spreads of \(PG(3, q)\). Des. Codes Cryptogr. 8(1–2), 79–89 (1996).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baker R.D., Ebert G.L.: Two—dimensional flag—transitive planes revisited. Geom. Dedic. 63, 1–15 (1996).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bassalygo L.A., Zinoviev V.A.: Remark on balanced incomplete block designs, near-resolvable block designs, and q-ary constant-weight codes. Probl. Inf. Trans. 53(1), 51–54 (2017).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Betten A.: The packings of \(PG(3,3)\). Des. Codes Cryptogr. 79(3), 583–595 (2016).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beutelspacher A.: On parallelisms in finite projective spaces. Geom. Dedic. 3(1), 35–45 (1974).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Braun M.: Construction of a point-cyclic resolution in \(PG(9,2)\). Innov. Incid. Geom. 3, 33–50 (2006).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Caliski T., Kageyama S.: On the analysis of experiments in affine resolvable designs. J. Stat. Plan. Inference 138(11), 3350–3356 (2008).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Czerwinski T., Oakden D.: The translation planes of order twenty-five. J. Comb. Theory Ser. A 59(2), 193–217 (1992).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Denniston R.H.F.: Some packings of projective spaces. Atti Acc. Naz. Lincei Rend. 52(8), 36–40 (1972).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Denniston R.H.F.: Cyclic packings of the projective space of order 8. Atti Acc. Naz. Lincei Rend. Cl. Sci. Fix. Mat. Natur. 54, 373–377 (1973).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ding C., Yin J.: A construction of optimal constant composition codes. Des. Codes Cryptogr. 40(2), 157–165 (2006).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Etzion T.: Partial k-Parallelisms in finite projective spaces. J. Comb. Des. 23, 101–114 (2015).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Etzion T., Silberstein N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 59(2), 1004–1017 (2013).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Etzion T., Storme L.: Galois geometries and Coding Theory. Des. Codes Cryptogr. 78(1), 311–350 (2016).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Etzion T., Vardy A.: Automorphisms of codes in the Grassmann scheme. arXiv:1210.5724 (2012).
  18. 18.
    GAP: Groups, Algorithms, Programming—A System for Computational Discrete Algebra. https://www.gap-system.org/. Accessed 20 Dec 2017.
  19. 19.
    Glynn D.: On a set of lines of \(PG(3, q)\) corresponding to a maximal cap contained in the Klein quadric of \(PG(5, q)\). Geom. Dedic. 26(3), 273–280 (1988).MathSciNetzbMATHGoogle Scholar
  20. 20.
    Havlicek H., Riesinger R.: Pencilled regular parallelisms. Acta Math. Hung. 153(1), 249–264 (2017).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Heinlein D., Honold Th., Kiermaier M., Kurz S.: Generalized vector space partitions. Bayreuth, preprint 2018-2012 p. https://epub.uni-bayreuth.de/3644/ (2018).
  22. 22.
    Hishida T., Jimbo M.: Possible patterns of cyclic resolutions of the BIB design associated with \(PG(7,2)\). Congr. Numer. 131, 179–186 (1998).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Johnson N.L.: Subplane Covered Nets, vol. 222. Monographs and Textbooks in Pure and Applied MathematicsMarcel Dekker, New York (2000).zbMATHGoogle Scholar
  24. 24.
    Johnson N.L.: Some new classes of finite parallelisms. Note Mat. 20(2), 77–88 (2000/2001).Google Scholar
  25. 25.
    Johnson N.L.: Parallelisms of projective spaces. J. Geom. 76(1–2), 110–182 (2003).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Johnson N.L.: Combinatorics of Spreads and Parallelisms. CRC Press, New York (2010).zbMATHGoogle Scholar
  27. 27.
    Johnson N.L., Montinaro A.: The transitive t-parallelisms of a finite projective space. Adv. Geom. 12(3), 401–429 (2012).MathSciNetzbMATHGoogle Scholar
  28. 28.
    Johnson S., Weller S.: Resolvable 2-designs for regular low density parity-check codes. IEEE Trans. Commun. 51(9), 1413–1419 (2003).Google Scholar
  29. 29.
    Kurosawa K., Kageyama S.: New bound for affine resolvable designs and its application to authentication codes. In: Du D.Z., Li M. (eds.) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg (1995).Google Scholar
  30. 30.
    Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lunardon G.: On regular parallelisms in \(PG(3, q)\). Discret. Math. 51, 229–335 (1984).MathSciNetzbMATHGoogle Scholar
  32. 32.
    Olmez O., Ramamoorthy A.: Fractional repetition codes with flexible repair from combinatorial designs. IEEE Trans. Inf. Theory 62(4), 1565–1591 (2016).MathSciNetzbMATHGoogle Scholar
  33. 33.
    Penttila T., Williams B.: Regular packings of \(PG(3, q)\). Eur. J. Comb. 19(6), 713–720 (1998).MathSciNetzbMATHGoogle Scholar
  34. 34.
    Prince A.R.: Parallelisms of \(PG(3,3)\) invariant under a collineation of order 5. In: Johnson N.L. (eds.) Mostly Finite Geometries. Lecture Notes Pure Applied Mathematics, vol 190, pp. 383–390. Marcel Dekker, New York (l997).Google Scholar
  35. 35.
    Prince A.R.: The cyclic parallelisms of \(PG(3,5)\). Eur. J. Comb. 19(5), 613–616 (1998).MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ruj S., Seberry J., Roy B.: Key predistribution schemes using block designs in wireless sensor networks. In: 12-th IEEE International Conference on Computational Science and Engineering (CSE), pp. 873–878 (2009).Google Scholar
  37. 37.
    Sarmiento J.: Resolutions of \(PG(5,2)\) with point-cyclic automorphism group. J. Comb. Des. 8(1), 2–14 (2000).MathSciNetzbMATHGoogle Scholar
  38. 38.
    Semakov N., Zinovev V.: Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs. Probl. Peredachi Inf. 4(2), 3–10 (1968).MathSciNetzbMATHGoogle Scholar
  39. 39.
    Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004).zbMATHGoogle Scholar
  40. 40.
    Stinson D.R., Vanstone S.: Orthogonal packings in \(PG(5,2)\). Aequ. Math. 31(1), 159–168 (1986).MathSciNetzbMATHGoogle Scholar
  41. 41.
    Storme L.: Finite Geometry. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 702–729. CRC Press, Boca Raton (2006).Google Scholar
  42. 42.
    Topalova S., Zhelezova S.: On transitive parallelisms of \(PG(3,4)\). Appl. Algebra Eng. Commun. Comput. 24(3–4), 159–164 (2013).MathSciNetzbMATHGoogle Scholar
  43. 43.
    Topalova S., Zhelezova S.: On point-transitive and transitive deficiency one parallelisms of \(PG(3,4)\). Des. Codes Cryptogr. 75(1), 9–19 (2015).MathSciNetzbMATHGoogle Scholar
  44. 44.
    Topalova S., Zhelezova S.: New regular parallelisms of \(PG(3,5)\). J. Comb. Des. 24(10), 473–482 (2016).MathSciNetzbMATHGoogle Scholar
  45. 45.
    White C.: Two cyclic arrangement problems in finite projective geometry: parallelisms and two-intersection set, PhD thesis, California Institute of Technology (2002).Google Scholar
  46. 46.
    Walker M.: Spreads covered by derivable partial spreads. J. Comb. Theory Ser. A 38(2), 113–130 (1985).MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zaitsev G., Zinoviev V., Semakov N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In: Proceedings of Second International Symposium on Information Theory, (Armenia, USSR: Budapest. Academiai Kiado 257–263(1973) (1971).Google Scholar
  48. 48.
    Zhelezova S.: Cyclic parallelisms of \(PG(5,2)\). Math. Balkanica 24(1–2), 141–146 (2010).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBASSofiaBulgaria

Personalised recommendations