Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 1, pp 67–74 | Cite as

Phased unitary Golay pairs, Butson Hadamard matrices and a conjecture of Ito’s

  • Ronan Egan
Article

Abstract

Pairs of complementary binary or quaternary sequences of length v such as Golay pairs, complex Golay pairs and periodic Golay pairs may be used to construct Hadamard matrices and complex Hadamard matrices of order 2v. We generalize these and define unitary Golay pairs and phased unitary Golay pairs of length v with entries in the kth roots of unity for any \(k \ge 2\). This leads to a construction of Butson Hadamard matrices of order 2v over the kth roots of unity for even k. Ito conjectured that a central relative (4v, 2, 4v, 2v)-difference set exists in a dicyclic group of order 8v for all \(v \ge 1\), and this is known to imply the Hadamard conjecture. With our construction we prove that Ito’s conjecture also implies the stronger complex Hadamard conjecture. As a consequence, with this method we construct a complex Hadamard matrix of order 2v for any v for which Ito’s conjecture is verified, in particular, any \(v \le 46\).

Keywords

Unitary Golay pair Butson Hadamard matrix Complementary sequences 

Mathematics Subject Classification

05B20 11B99 15B33 

Notes

Acknowledgements

This work has been fully supported by Croatian Science Foundation under the project 1637. The author would like to thank the reviewers for helpful suggestions that improved the quality of this paper.

References

  1. 1.
    Arasu K.T.: Sequences and arrays with desirable correlation properties. In: Crnković D., Tonchev V. (eds.) Information security, coding theory and related combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, pp. 136–171. Amsterdam, (2011).Google Scholar
  2. 2.
    Balonin,N. A., Đoković D. Ž.: Negaperiodic Golay Pairs and Hadamard Matrices, arxiv:1508.00640, (2015).
  3. 3.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruzda W., Tadej W., Życzkowski K.: http://chaos.if.uj.edu.pl/~karol/hadamard/.
  5. 5.
    Butson A.T.: Generalized Hadamard matrices. Proc. Am. Math. Soc. 13, 894–898 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Craigen R.: Constructions for orthogonal matrices, PhD thesis, University of Waterloo, March (1991).Google Scholar
  7. 7.
    Craigen R.: Complex Golay sequences. J. Combin. Math. Combin. Comput. 15, 161–169 (1994).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Craigen R., Holzmann W., Kharaghani H.: Complex Golay sequences: structure and applications. Discret. Math. 252, 73–89 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davis J. A., Jedwab J.: Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences and Reed-Muller codes, Techical Report HPL-97-158, HP Laboratories Bristol (1997).Google Scholar
  10. 10.
    Đoković D.Ž.: Good matrices of order 33, 35 and 127 exist. J. Combin. Math. Combin. Comput. 14, 145–152 (1993).Google Scholar
  11. 11.
    Đoković D.Ž., Kotsireas I.S.: Periodic Golay pairs of length 72. In: Colbourn C. (ed.) Algebraic Design Theory and Hadamard Matrices, vol. 133, pp. 83–92. Springer, NewYork (2015).Google Scholar
  12. 12.
    Egan R.: On equivalence of negaperiodic Golay pairs. Des. Codes Cryptogr. 85(3), 523–532 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Egan R., Flannery D.L., Catháin P.Ó.: Classifying cocyclic Butson Hadamard matrices. In: Colbourn C. (ed.) Algebraic Design Theory and Hadamard Matrices, vol. 133, pp. 93–106. Springer, NewYork (2015).CrossRefGoogle Scholar
  14. 14.
    Frank R.L.: Polyphase complementary codes. IEEE Trans. Inf. Theory IT 26, 641–647 (1980).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Golay M.J.E.: Multislit spectrometry. J. Opt. Soc. Am. 39, 437–444 (1949).CrossRefGoogle Scholar
  16. 16.
    Ito N.: On Hadamard groups IV. J. Algebra 234, 651–663 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kamali F., Kharaghani H.: Dihedral Golay sequences. Aust. J. Combin. 18, 139–145 (1998).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ma S.L., Ng W.S.: On non-existence of perfect and nearly perfect sequences. Int. J. Inf. Coding Theory 1(1), 15–38 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Paterson K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(1), 104–120 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schmidt B.: Williamson matrices and a conjecture of Ito’s. Des. Codes Cryptogr. 17, 61–68 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sivaswamy R.: Multiphase complementary codes. IEEE Trans. Inf. Theory IT 24, 564–572 (1978).CrossRefzbMATHGoogle Scholar
  22. 22.
    Tadej W., Życzkowski K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13(2), 133–177 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Turyn R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Combin. Theory A 16, 313–333 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Werner R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081–7094 (2001).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RijekaRijekaCroatia

Personalised recommendations