Some results on generalized strong external difference families

Article
  • 41 Downloads

Abstract

A generalized strong external difference family (briefly \((v, m; k_1,\dots ,k_m; \lambda _1,\dots ,\lambda _m)\)-GSEDF) was introduced by Paterson and Stinson in 2016. In this paper, we give some nonexistence results for GSEDFs. In particular, we prove that a \((v, 3;k_1,k_2,k_3; \lambda _1,\lambda _2,\lambda _3)\)-GSEDF does not exist when \(k_1+k_2+k_3< v\). We also give a first recursive construction for GSEDFs and prove that if there is a \((v,2;2\lambda ,\frac{v-1}{2};\lambda ,\lambda )\)-GSEDF, then there is a \((vt,2;4\lambda ,\frac{vt-1}{2};2\lambda ,2\lambda )\)-GSEDF with \(v>1\), \(t>1\) and \(v\equiv t\equiv 1\pmod 2\). Then we use it to obtain some new GSEDFs for \(m=2\). In particular, for any prime power q with \(q\equiv 1\pmod 4\), we show that there exists a \((qt, 2;(q-1)2^{n-1},\frac{qt-1}{2};(q-1)2^{n-2},(q-1)2^{n-2})\)-GSEDF, where \(t=p_1p_2\dots p_n\), \(p_i>1\), \(1\le i\le n\), \(p_1, p_2,\dots ,p_n\) are odd integers.

Keywords

Generalized strong external difference family Difference set Character theory Nonexistence 

Mathematics Subject Classification

05B05 05B10 

Notes

Acknowledgements

We would like to thank Prof. K. Feng of Tsinghua university for suggesting this research topic. We also thank the anonymous referees for their careful reading of the manuscript and many constructive comments and suggestions that greatly improved the readability of this paper.

References

  1. 1.
    Bao J., Ji L., Wei R., Zhang Y.: New existence and nonexistence results for strong external difference families. Discret. Math. (2017).  https://doi.org/10.1016/j.disc.2017.10.032.
  2. 2.
    Baumert L.D.: Cyclic Difference Sets, vol. 182. Lecture Notes in MathematicsSpringer, Berlin (1971).MATHGoogle Scholar
  3. 3.
    Bondy J.A., Murty U.S.R.: Graph Theory, vol. 244. Graduate Texts in MathematicsSpringer, New York (2008).MATHGoogle Scholar
  4. 4.
    Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2007).MATHGoogle Scholar
  5. 5.
    Cramer R., Dodis Y., Fehr S., Padro C., Wichs D.: Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors. Lecture Notes in Computer Science, vol. 4965, pp. 471–488 (2008).Google Scholar
  6. 6.
    Cramer R., Fehr S., Padro C.: Algebraic manipulation detection codes. Sci. China Math. 56, 1349–1358 (2013).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cramer R., Padro C., Xing C.: Optimal algebraic manipulation detection codes in the constant-error model. Lect. Notes Comput. Sci. 9014, 481–501 (2015).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Huczynska S., Paterson M.B.: Existence and non-existence results for strong external difference families. Discret. Math. 341, 87–95 (2018).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jedwab J., Li S.: Construction and nonexistence of strong external difference families. J. Algebr. Comb. (2018).  https://doi.org/10.1007/s10801-018-0812-8.Google Scholar
  10. 10.
    Kopilovich L.E.: Difference sets in noncyclic abelian groups. Cybernetics 25, 153–157 (1989).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lander E.S.: Symmetric Designs: An Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983).CrossRefGoogle Scholar
  12. 12.
    Ledermann W.: Introduction to Group Characters, 2nd edn. Cambridge University Press, Cambridge (1987).CrossRefMATHGoogle Scholar
  13. 13.
    Lidl R., Niederreiter H.: Finite Fields. Advanced Book ProgramAddison-Wesley Publishing Company, Reading, MA (1983).MATHGoogle Scholar
  14. 14.
    Martin W.J., Stinson D.R.: Some nonexistence results for strong external difference families using character theory. Bull. Inst. Comb. Appl. 80, 79–92 (2017).MathSciNetMATHGoogle Scholar
  15. 15.
    Paterson M.B., Stinson D.R.: Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. Discret. Math. 339, 2891–2906 (2016).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Stanton R.G., Sprott D.A.: A family of difference sets. Can. J. Math. 10, 73–77 (1958).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004).MATHGoogle Scholar
  18. 18.
    Wen J., Yang M., Feng K.: The \((n,m, k,\lambda )\)-strong external difference family with \(m\ge 5\) exists (2016). Arxiv preprint arXiv:1612.09495.
  19. 19.
    Wen J., Yang M., Fu F., Feng K.: Cyclotomic construction of strong external difference families in finite fields. Des. Codes Crypotogr. (2017).  https://doi.org/10.1007/s10623-017-0384-y.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsNanjing Normal UniversityNanjingChina

Personalised recommendations