Designs, Codes and Cryptography

, Volume 86, Issue 12, pp 2857–2868 | Cite as

Some results on generalized strong external difference families

  • Xiaojuan Lu
  • Xiaolei Niu
  • Haitao Cao


A generalized strong external difference family (briefly \((v, m; k_1,\dots ,k_m; \lambda _1,\dots ,\lambda _m)\)-GSEDF) was introduced by Paterson and Stinson in 2016. In this paper, we give some nonexistence results for GSEDFs. In particular, we prove that a \((v, 3;k_1,k_2,k_3; \lambda _1,\lambda _2,\lambda _3)\)-GSEDF does not exist when \(k_1+k_2+k_3< v\). We also give a first recursive construction for GSEDFs and prove that if there is a \((v,2;2\lambda ,\frac{v-1}{2};\lambda ,\lambda )\)-GSEDF, then there is a \((vt,2;4\lambda ,\frac{vt-1}{2};2\lambda ,2\lambda )\)-GSEDF with \(v>1\), \(t>1\) and \(v\equiv t\equiv 1\pmod 2\). Then we use it to obtain some new GSEDFs for \(m=2\). In particular, for any prime power q with \(q\equiv 1\pmod 4\), we show that there exists a \((qt, 2;(q-1)2^{n-1},\frac{qt-1}{2};(q-1)2^{n-2},(q-1)2^{n-2})\)-GSEDF, where \(t=p_1p_2\dots p_n\), \(p_i>1\), \(1\le i\le n\), \(p_1, p_2,\dots ,p_n\) are odd integers.


Generalized strong external difference family Difference set Character theory Nonexistence 

Mathematics Subject Classification

05B05 05B10 



We would like to thank Prof. K. Feng of Tsinghua university for suggesting this research topic. We also thank the anonymous referees for their careful reading of the manuscript and many constructive comments and suggestions that greatly improved the readability of this paper.


  1. 1.
    Bao J., Ji L., Wei R., Zhang Y.: New existence and nonexistence results for strong external difference families. Discret. Math. (2017). Scholar
  2. 2.
    Baumert L.D.: Cyclic Difference Sets, vol. 182. Lecture Notes in MathematicsSpringer, Berlin (1971).zbMATHGoogle Scholar
  3. 3.
    Bondy J.A., Murty U.S.R.: Graph Theory, vol. 244. Graduate Texts in MathematicsSpringer, New York (2008).zbMATHGoogle Scholar
  4. 4.
    Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2007).zbMATHGoogle Scholar
  5. 5.
    Cramer R., Dodis Y., Fehr S., Padro C., Wichs D.: Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors. Lecture Notes in Computer Science, vol. 4965, pp. 471–488 (2008).Google Scholar
  6. 6.
    Cramer R., Fehr S., Padro C.: Algebraic manipulation detection codes. Sci. China Math. 56, 1349–1358 (2013).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cramer R., Padro C., Xing C.: Optimal algebraic manipulation detection codes in the constant-error model. Lect. Notes Comput. Sci. 9014, 481–501 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Huczynska S., Paterson M.B.: Existence and non-existence results for strong external difference families. Discret. Math. 341, 87–95 (2018).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jedwab J., Li S.: Construction and nonexistence of strong external difference families. J. Algebr. Comb. (2018). Scholar
  10. 10.
    Kopilovich L.E.: Difference sets in noncyclic abelian groups. Cybernetics 25, 153–157 (1989).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lander E.S.: Symmetric Designs: An Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983).CrossRefGoogle Scholar
  12. 12.
    Ledermann W.: Introduction to Group Characters, 2nd edn. Cambridge University Press, Cambridge (1987).CrossRefGoogle Scholar
  13. 13.
    Lidl R., Niederreiter H.: Finite Fields. Advanced Book ProgramAddison-Wesley Publishing Company, Reading, MA (1983).zbMATHGoogle Scholar
  14. 14.
    Martin W.J., Stinson D.R.: Some nonexistence results for strong external difference families using character theory. Bull. Inst. Comb. Appl. 80, 79–92 (2017).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Paterson M.B., Stinson D.R.: Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. Discret. Math. 339, 2891–2906 (2016).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Stanton R.G., Sprott D.A.: A family of difference sets. Can. J. Math. 10, 73–77 (1958).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004).zbMATHGoogle Scholar
  18. 18.
    Wen J., Yang M., Feng K.: The \((n,m, k,\lambda )\)-strong external difference family with \(m\ge 5\) exists (2016). Arxiv preprint arXiv:1612.09495.
  19. 19.
    Wen J., Yang M., Fu F., Feng K.: Cyclotomic construction of strong external difference families in finite fields. Des. Codes Crypotogr. (2017). Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsNanjing Normal UniversityNanjingChina

Personalised recommendations