Constructions of complete permutation polynomials

  • Xiaofang Xu
  • Chunlei Li
  • Xiangyong Zeng
  • Tor Helleseth
Article
  • 76 Downloads

Abstract

Based on the Feistel and MISTY structures, this paper presents several new constructions of complete permutation polynomials (CPPs) of the finite field \({\mathbb {F}}_{2^{n}}^2\) for a positive integer n and three constructions of CPPs over \({\mathbb {F}}_{p^{n}}^m\) for any prime p and positive integer \(m\ge 2\). In addition, we investigate the upper bound on the algebraic degree of these CPPs and show that some of them can have nearly optimal algebraic degree.

Keywords

Permutation polynomial Complete permutation polynomial Algebraic degree 

Mathematics Subject Classification

05A05 11T06 11T55 

Notes

Acknowledgements

The authors would like to thank Prof. Xiwang Cao and Dr. Nian Li for their valuable discussions and suggestions. The authors also thank the anonymous referees whose comments significantly improved the quality of the paper. X. Zeng was supported by National Natural Science Foundation of China under Grant 61472120 and National Natural Science Foundation of Hubei Province of China under Grant 2017CFB143. The work of T. Helleseth and C. Li is supported by the Research Council of Norway; C. Li’s work is also partly supported by the research project (No. 720025) from UH-nett Vest in Norway and the National Natural Science Foundation of China under Grant 61771021.

References

  1. 1.
    Bartolia D., Giulietti M., Zinib G.: On monomial complete permutation polynomials. Finite Fields Appl. 41, 132–158 (2016).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bassalygo L., Zinoviev V.: Permutation and complete permutation polynomials. Finite Fields Appl. 33, 198–211 (2015).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Diffie W., Ledin G. (translators): SMS4 encryption algorithm for wireless networks. https://eprint.iacr.org/2008/329.pdf.
  4. 4.
    Feng D., Feng X., Zhang W., et al.: Loiss: a byte-oriented stream cipher. In: IWCC’11 Proceedings of the Third International Conference on Coding and Cryptology, pp. 109-125. Springer, New York (2011).Google Scholar
  5. 5.
    Hou X.: Permutation polynomials over finite fields-a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lidl R., Niederreiter H.: Finite Fields Encycl. Math. Appl. Cambridge University Press, Cambridge (1997).Google Scholar
  7. 7.
    Mann H.B.: The construction of orthogonal Latin squares. Ann. Math. Stat. 13(4), 418–423 (1942).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Markovski S., Mileva A.: Generating huge quasigroups from small non-linear bijections via extended Feistel function. Quasigroups Relat. Syst. 17(1), 91–106 (2009).MathSciNetMATHGoogle Scholar
  9. 9.
    Matsui M.: New block encryption algorithm MISTY. In: Fast Software Encryption—FSE’97. Lect. Notes Comput. Sci, vol. 1267, pp. 54–68. Springer, New York (1997)Google Scholar
  10. 10.
    Mileva A., Markovski S.: Quasigroup representation of some Feistel and generalized Feistel ciphers. In: ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol. 207, pp. 161–171. Springer, Berlin (2012).Google Scholar
  11. 11.
    Mileva A., Markovski S.: Shapeless quasigroups derived by Feistel orthomorphisms. Glas. Mat. 47(67), 333–349 (2012).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mittenthal L.: Nonlinear dynamic substitution devices and methods for block substitutions employing coset decompositions and direct geometric generation. US Patent 5647001 (1997).Google Scholar
  13. 13.
    Mittenthal L.: Block substitutions using orthomorphic mappings. Adv. Appl. Math. 16(10), 59–71 (1995).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mullen G.L., Panario D.: Handbook of Finite Fields. Taylor-Francis, Boca Raton (2013).CrossRefMATHGoogle Scholar
  15. 15.
    Muratovic-Ribic A., Pasalic E.: A note on complete mapping polynomials over finite fields and their applications in cryptography. Finite Fields Appl. 25, 306–315 (2014).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    National Institute of Standards and Technology.: Data Encryption Standard, FIPS Publication 46-2 (1993). http://www.itl.nist.gov/fipspubs/fip46-2.htm.
  17. 17.
    Niederreiter H., Robinson K.H.: Complete mappings of finite fields. J. Aust. Math. Soc. A 33(2), 197–212 (1982).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sarkar S., Bhattacharya S., Cesmelioglu A.: On some permutation binomials of the form \(x^{\frac{2^n-1}{k}+1}+ax\) over \({\mathbb{F}}_{2^n}\): existence and count. In: WAIFI, 2012. Lect. Notes Comput. Sci., vol. 7369, pp. 236–246. Springer, New York (2012).Google Scholar
  19. 19.
    Schnorr C.P., Vaudenay S.: Black box cryptanalysis of hash networks based on multipermutations. In: Advances in Cryptology-Eurocrypt’94, pp. 47–57. Springer, New York (1995).Google Scholar
  20. 20.
    Specification of SMS4, block cipher for WLAN products-SMS4 (in Chinese). http://www.oscca.gov.cn/UpFile/200621016423197990.pdf.
  21. 21.
    Stǎnicǎ P., Gangopadhyay S., Chaturvedi A., Gangopadhyay A.K., Maitra S.: Investigations on bent and negabent functions via the negaHadamard transform. IEEE Trans. Inf. Theory 58, 4064–4072 (2012).CrossRefMATHGoogle Scholar
  22. 22.
    Tu Z., Zeng X., Hu L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tuxanidy A., Wang Q.: Compositional inverses, complete mappings, orthogonal Latin squares and bent functions. arXiv:1409.6540 [math.NT] (2014).
  24. 24.
    Vaudenay S.: On the Lai-Massey scheme. In: Advances in Cryptology—ASIACRYPT’99. Lect. Notes Comput. Sci., vol. 1716, pp. 8–19. Springer, New York (1999).Google Scholar
  25. 25.
    Vaudenay S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Fast Software Encryption—FSE’94. Lect. Notes Comput. Sci., vol. 1008, pp. 286–297. Springer, New York (1994).Google Scholar
  26. 26.
    Wan D.: On a problem of Niederreiter and Robinson about finite fields. J. Aust. Math. Soc. A 41(3), 336–338 (1986).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wu B., Lin D.: On constructing complete permutation polynomials over finite fields of even characteristic. Discret. Appl. Math. 184, 213–222 (2015).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wu G., Li N., Helleseth T., Zhang Y.: Some classes of monomial complete permutation polynomials over finite fields of characteristic two. Finite Fields Appl. 28, 148–165 (2014).MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wu G., Li N., Helleseth T., Zhang Y.: More classes of complete permutation polynomials over \({\mathbb{F}}_{q}\). Sci. China Math. 58(10), 1–14 (2015).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xu G., Cao X.: Complete permutation polynomials over finite fields of odd characteristic. Finite Fields Appl. 31, 228–240 (2015).MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Yuan Y., Tong Y., Zhang H.: Complete mapping polynomials over finite field \({\mathbb{F}}_{16}\). In: Arithmetic of Finite Fields. Lect. Notes Comput. Sci., vol. 4547, pp. 147–158. Springer, New York (2007).Google Scholar
  32. 32.
    Yuan P., Ding C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17(6), 560–574 (2011).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zha Z., Hu L., Cao X.: Constructing permutations and complete permutations over finite fields via subfield-valued polynomials. Finite Fields Appl. 31, 162–177 (2015).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied MathematicsHubei UniversityWuhanChina
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations