Advertisement

Identifying an unknown code by partial Gaussian elimination

  • Kevin Carrier
  • Jean-Pierre TillichEmail author
Article
  • 20 Downloads
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography
  2. Special Issue: Coding and Cryptography

Abstract

We consider in this paper the problem of reconstructing a linear code from a set of noisy codewords. We revisit the algorithms that have been devised for solving this problem and show that by generalizing and mixing two approaches that have been proposed in this setting, we obtain a significantly better algorithm. It basically consists in setting up a matrix whose rows are the noisy codewords, then running a partial Gaussian algorithm on it and detecting a small set of columns outside the echelon part of the matrix whose sum is sparse. We view the last task of the algorithm as an instance of the well known close neighbors search problem and we use an algorithm due to Dubiner to solve it more efficiently than the naive projection method which is generally invoked in this case. We analyze the complexity of our algorithm by focusing on an important practical case, namely when the code is an LDPC code. In doing so, we also obtain a result of independent interest, namely a tight upper-bound on the expected weight distribution of the dual of an LDPC code in a form that allows to derive an asymptotic formula.

Keywords

94B05 linear codes 94B60 other codes Blind reconstruction of codes LDPC codes 

Mathematics Subject Classification

68P30 

Notes

Acknowledgements

We wish to thank the anonymous reviewers for their work and their comments. They were very helpful for improving the quality of our article.

References

  1. 1.
    Andoni A., Indyk P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008).CrossRefGoogle Scholar
  2. 2.
    Andoni A., Indyk P.: Nearest neighbors in high-dimensional spaces. In: Goodman J.E., O’Rourke J., Tóth C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, ch. 43. CRC Press, Boca Ratin (2017).Google Scholar
  3. 3.
    Andoni A., Indyk P., Nguyen H.L., Razenshteyn I.: Beyond locality-sensitive hashing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’14, Society for Industrial and Applied Mathematics, pp. 1018–1028 (2014).Google Scholar
  4. 4.
    Andoni A., Razenshteyn I.P.: Optimal data-dependent hashing for approximate near neighbors. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, ACM, pp. 793–801 (2015).Google Scholar
  5. 5.
    Barbero Á.I., Ytrehus Ø.: Modifications of the rao-nam cryptosystem. In: Buchmann J., Høholdt T., Stichtenoth H., Tapia-Recillas H., (eds.) Coding Theory, Cryptography and Related Areas: Proceedings of an International Conference on Coding Theory, Cryptography and Related Areas, held in Guanajuato, Mexico, in April 1998. Springer, Berlin, pp. 1–12 (2000).Google Scholar
  6. 6.
    Barbier J.: Reconstruction of turbo-code encoders. In: Proceedings of SPIE, vol. 5819, pp. 463–473 (2005).Google Scholar
  7. 7.
    Barbier J.: Analyse de canaux de communication dans un contexte non coopératif. PhD thesis, École Polytechnique (2007).Google Scholar
  8. 8.
    Barbier J., Sicot G., Houcke S.: Algebraic approach of the reconstruction of linear and convolutional error correcting codes. In: World Academy of Science, Engineering and Technology, vol. 16, pp. 66–71 (2006).Google Scholar
  9. 9.
    Becker A., Ducas L., Gama N., Laarhoven T.: New directions in nearest neighbor searching with applications to lattice sieving. IACR Cryptology ePrint Archive, Report 2015/1128 (2015). http://eprint.iacr.org/2015/1128.
  10. 10.
    Bellard M., Tillich J.-P.: Detecting and reconstructing an unknown convolutional code by counting collisions. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Honolulu, Hawaii, USA), pp. 2967–2971 (2014).Google Scholar
  11. 11.
    Both L., May A.: Optimizing BJMM with nearest neighbors: full decoding in \(2^{2/21 n}\) and McEliece security. In: WCC workshop on coding and cryptography (2017). http://wcc2017.suai.ru/Proceedings_WCC2017.zip.
  12. 12.
    Both L., May A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange T., Steinwandt R. (eds.) Post-quantum cryptography 2018 (Fort Lauderdale, FL, USA), vol. 10786, pp. 25–46. LNCS. Springer, Berlin (2018).Google Scholar
  13. 13.
    Bringer J., Chabanne H.: Code reverse engineering problem for identification codes. IEEE Trans. Inf. Theory 58(4), 2406–2412 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Burshtein D., Miller G.: Asymptotic enumeration methods for analyzing LDPC codes. IEEE Trans. Inf. Theory 50(6), 1115–1131 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chabot C.: Reconstruction of families of codes. application to cyclic codes. In: Workshop on Coding and Cryptography (WCC) (Ullensvang, Norway) (2009).Google Scholar
  16. 16.
    Cluzeau M., Finiasz M.: Reconstruction of punctured convolutional codes. In: IEEE Information Theory Workshop (ITW) (Taormina, Italy) (2009).Google Scholar
  17. 17.
    Cluzeau M., Finiasz M.: Recovering a code’s length and synchronization from a noisy intercepted bitstream. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Seoul, Korea), pp. 2737–2741 (2009).Google Scholar
  18. 18.
    Cluzeau M., Tillich J.-P.: On the code reverse engineering problem. In Proceedings of IEEE International Symposium Information Theory—ISIT (Toronto, Canada), pp. 634–638 (2008).Google Scholar
  19. 19.
    Cluzeau M., Finiasz M., Tillich J.-P.: Methods for the Reconstruction of Parallel Turbo Codes. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Austin, Texas, USA), pp. 2008–2012 (2010).Google Scholar
  20. 20.
    Côte M., Sendrier,N.: Reconstruction of convolutional codes from noisy observation. In Proceedings of IEEE International Symposium Information Theory—ISIT (Seoul, Korea), pp. 546–550 (2009).Google Scholar
  21. 21.
    Côte M., Sendrier N.: Reconstruction of a turbo-code interleaver from noisy observation. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Austin, Texas, USA), pp. 2003–2007 (2010).Google Scholar
  22. 22.
    Deshpande A.J.: Sampling-based algorithms for dimension reduction. PhD thesis, Massachusetts Institute of Technology (2007).Google Scholar
  23. 23.
    Di C., Richardson T., Urbanke R.: Weight distribution of low-density parity-check codes. IEEE Trans. Inf. Theory 52(11), 4839–4855 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dingel J., Hagenauer J.: Parameter estimation of a convolutional encoder from noisy observation. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Nice, France, June 2007), pp. 1776–1780 (2007).Google Scholar
  25. 25.
    Dubiner M.: Bucketing coding and information theory for the statistical high-dimensional nearest-neighbor problem. IEEE Trans. Inf. Theory 56(8), 4166–4179 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dumer I.: On minimum distance decoding of linear codes. In: Proceedings of 5th Joint Soviet-Swedish International Workshop Information Theory (Moscow), pp. 50–52 (1991).Google Scholar
  27. 27.
    Esmaeili M., Dakhilalian M., Gulliver T.A.: New secure channel coding scheme based on randomly punctured quasi-cyclic-low density parity check codes. IET Commun. 8(14), 2556–2562 (2014).CrossRefGoogle Scholar
  28. 28.
    Filiol E.: Reconstruction of convolutional encoders over \(GF(q)\). In: Cryptography and Coding: 6th IMA International Conference, pp. 101–109 (1997).Google Scholar
  29. 29.
    Filiol E.: Reconstruction of punctured convolutional encoders. In: Proceedings of IEEE International Symposium on Information Theory and Applications (ISITA) (2000).Google Scholar
  30. 30.
    Forney G.D.J.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory 47(2), 520–548 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gallager R.G.: Low Density Parity Check Codes. M.I.T. Press, Cambridge, Massachusetts (1963).zbMATHGoogle Scholar
  32. 32.
    Gionis A., Indyk P., Motwani R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th VLDB Conference, pp. 518–529 (1999).Google Scholar
  33. 33.
    Gordon D.M., Miller V.S., Ostapenko P.: Optimal hash functions for approximate matches on the \(n\)-cube. IEEE Trans. Inf. Theory 56(3), 984–991 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Har-Peled S., Indyk P., Motwani R.: Approximate nearest neighbor: towards removing the curse of dimensionality. Theory Comput. 8(14), 321–350 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Indyk P., Motwani R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’98, ACM, pp. 604–613 (1998).Google Scholar
  36. 36.
    Lu P., Shen L., Luo X., Zou Y.: Blind recognition of punctured convolutional codes. In: Proceedings of IEEE International Symposium on Information Theory—ISIT (Chicago, USA), p. 457 (2004).Google Scholar
  37. 37.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 5th edn. North-Holland, Amsterdam (1986).zbMATHGoogle Scholar
  38. 38.
    Mafakheri B., Eghlidos T., Pilaram H.: An efficient secure channel coding scheme based on polar codes. ISC Int. J. Inf. Secur. 9(2), 13–20 (2017).Google Scholar
  39. 39.
    Marazin M.: Reconnaissance en aveugle de codeur à base de code convolutif: contribution à la mise en oeuvre d’un récepteur intelligent. PhD thesis, Université de Bretagne Occidentale (2009).Google Scholar
  40. 40.
    Marazin M., Gautier R., Burel G.: Algebraic method for blind recovery of punctured convolutional encoders from an erroneous bitstream. IET Signal Process. 6(2), 122–131 (2012).MathSciNetCrossRefGoogle Scholar
  41. 41.
    Matsui M.: Linear cryptanalysis method for DES cipher. In: Proceedings of Advances in Cryptology—EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23–27, 1993, vol. 765. Lecture Notes in Computer Science. Springer, pp. 386–397 (1993).Google Scholar
  42. 42.
    May A., Ozerov I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald E., Fischlin M. (eds.) Advances in Cryptology—EUROCRYPT 2015, vol. 9056, pp. 203–228. LNCS. Springer, Berlin (2015).Google Scholar
  43. 43.
    Naseri A., Azmoon O., Fazeli S.: Blind recognition algorithm of turbo codes for communication intelligence systems. Int. J. Comput. Sci. Issues 8(1), 68–72 (2011).Google Scholar
  44. 44.
    Rao T.R.N., Nam K.: Private-key algebraic-coded cryptosystems. In: Advances in cryptology—CRYPTO’86, vol. 263, pp. 35–48. LNCS. Springer, Berlin (1986).Google Scholar
  45. 45.
    Rathi V.: On the asymptotic weight distribution of regular LDPC ensembles. In: IEEE Proceedings of International Symposium on Information Theory, 2005 (ISIT 2005), pp. 2161–2165 (2005).Google Scholar
  46. 46.
    Rice B.: Determining the parameters of a rate \(\frac{1}{n}\) convolutional encoder over \({GF}(q)\). In: Third International Conference on Finite Fields and Applications (Glasgow, 1995).Google Scholar
  47. 47.
    Richardson T., Urbanke R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008).CrossRefzbMATHGoogle Scholar
  48. 48.
    Rosen G.L.: Examining coding structure and redundancy in DNA. IEEE Eng. Med. Biol. 25(1), 62–68 (2006).MathSciNetCrossRefGoogle Scholar
  49. 49.
    Sicot G., Houcke S., Barbier J.: Blind detection of interleaver parameters. Signal Process. 89(4), 450–462 (2009).CrossRefzbMATHGoogle Scholar
  50. 50.
    Sobhi Afshar A.A., Eghlidos T., Aref M.R.: Efficient secure channel coding based on quasi-cyclic low-density parity-check codes. IET Commun. 3(2), 279–292 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Struik R., Tilburg J.V.: The Rao-Nam scheme is insecure against a chosen-plaintext attack. In: Advances in Cryptology—CRYPTO’87, vol. 293, pp. 445–457. LNCS. Springer, Berlin (1987).Google Scholar
  52. 52.
    Tillich, J.-P., Tixier, A., Sendrier, N.: Recovering the interleaver of an unknown turbo-code. In: Proceedings of IEEE International Symposium Information Theory—ISIT (Honolulu, Hawaii, USA), pp. 2784–2788 (2014).Google Scholar
  53. 53.
    Tixier A.: Blind identification of an unknown interleaved convolutional code. In: IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14–19, 2015, pp. 71–75 (2015).Google Scholar
  54. 54.
    Tixier A.: Blind identification of an unknown interleaved convolutional code. arXiv:1501.03715 (2015).
  55. 55.
    Tixier A.: Reconnaissance de codes correcteurs (Blind identification of error correcting codes). PhD thesis, Pierre and Marie Curie University, Paris, France (2015).Google Scholar
  56. 56.
    Valembois A.: Detection and recognition of a binary linear code. Discret. Appl. Math. 111, 199–218 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Valiant L.G.: Graph-theoretic arguments in low-level complexity. In: Proceedings of Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September 5–9, 1977, vol. 53, pp. 162–176. LNCS. Springer, Berlin (1977).Google Scholar
  58. 58.
    Wang J., Yue Y., Yao J.: A method of blind recognition of cyclic code generator polynomial. In: IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (2010).Google Scholar
  59. 59.
    Wang L., Hu Y., Hao S., Qi L.: The method of estimating the length of linear cyclic code based on the distribution of code weight. In: IEEE 2nd International Conference on Information Science and Engineering (ICISE), pp. 2459–2462 (2010).Google Scholar
  60. 60.
    Wang Z.H.F., Zhou Y.: A method for blind recognition of convolution code based on Euclidean algorithm. In: International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China), pp. 1414–1417 (2007).Google Scholar
  61. 61.
    Wilf H.: Generatingfunctioology, 2nd edn. Academic Press, Cambridge (1994).Google Scholar
  62. 62.
    Yardi A.-D., Vijayakumaran S., Kumar A.: Blind reconstruction of binary cyclic codes. In: Proceedings of the European Wireless 2014 (2014).Google Scholar
  63. 63.
    Zhou J., Huang Z., Su S., Yang S.: Blind recognition of binary cyclic codes. In: EURASIP Journal on Wireless Communications and Networking (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.InriaParisFrance

Personalised recommendations