Designs, Codes and Cryptography

, Volume 86, Issue 2, pp 239–250 | Cite as

The order of the automorphism group of a binary \({\varvec{q}}\)-analog of the Fano plane is at most two

  • Michael Kiermaier
  • Sascha Kurz
  • Alfred Wassermann
Part of the following topical collections:
  1. Special Issue on Network Coding and Designs


The question if there exists a q-analog of the Fano plane is open since it was first posed in 1972. For a putative binary q-analog of the Fano plane all automorphisms of order greater than 4 had been excluded previously. Here, it is shown with theoretical and computational methods that the order of the automorphism group of a binary q-analog of the Fano plane is either trivial or of order 2. Moreover, some groups which had been excluded by computer search in Braun et al. (Eur J Comb 51:443–457, 2016) are ruled out as automorphism group by theoretic arguments.


Steiner triple systems q-Analogs of designs Fano plane Automorphism group 

Mathematics Subject Classification

51E20 05B07 05A30 



The authors would like to acknowledge the financial support provided by COST—European Cooperation in Science and Technology—within the Action IC1104 Random Network Coding and Designs over GF(q). The authors also want to thank the IT service center of the University Bayreuth for providing the excellent computing cluster, and especially Dr. Bernhard Winkler for his support. Finally, the authors thank the anonymous referees for pointing out some errors and giving helpful remarks which improved the paper considerably.


  1. 1.
    Berge C., Ray-Chaudhuri D.: Unsolved problems. In: Berge C., Ray-Chaudhuri D. (eds.) Hypergraph Seminar: Ohio State University 1972, no. 411 in Lecture Notes in Mathematics, pp. 278–287. Springer, Berlin (1974). doi: 10.1007/BFb0066199.CrossRefGoogle Scholar
  2. 2.
    Braun M., Etzion T., Östergård P., Vardy A., Wassermann A.: Existence of \(q\)-analogs of Steiner systems. Forum Math. Pi 4, e7 (2016). doi: 10.1017/fmp.2016.5.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Braun M., Kerber A., Laue R.: Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34(1), 55–70 (2005). doi: 10.1007/s10623-003-4194-z.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Braun M., Kiermaier M., Kohnert A., Laue R.: Large sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braun M., Kiermaier M., Nakić A.: On the automorphism group of a binary \(q\)-analog of the Fano plane. Eur. J. Comb. 51, 443–457 (2016). doi: 10.1016/j.ejc.2015.07.014.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohn H.: Projective geometry over \(\mathbb{F}_1\) and the Gaussian binomial coefficients. Am. Math. Mon. 111(6), 487–495 (2004). doi: 10.2307/4145067.CrossRefzbMATHGoogle Scholar
  7. 7.
    Heden O., Sissokho P.A.: On the existence of a \((2,3)\)-spread in \({V}(7, 2)\). Ars Comb. 1101, 5336 (2011).Google Scholar
  8. 8.
    Kaski P.: Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms. SIAM J. Discret. Math. 19(3), 664–690 (2005). doi: 10.1137/S0895480104444788.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kiermaier M., Laue R.: Derived and residual subspace designs. Adv. Math. Commun. 9(1), 105–115 (2015). doi: 10.3934/amc.2015.9.105.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kiermaier M., Pavčević M.O.: Intersection numbers for subspace designs. J. Comb. Des. 23(11), 463–480 (2015). doi: 10.1002/jcd.21403.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kirkman T.P.: On a problem in combinatorics. Camb. Dublin Math. J. 2, 191–204 (1847).Google Scholar
  12. 12.
    Knuth D.E.: Dancing links. In: Davies J., Roscoe B., Woodcock J. (eds.) Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare. Palgrave (2000)Google Scholar
  13. 13.
    Kramer E.S., Mesner D.M.: \(t\)-Designs on hypergraphs. Discret. Math. 15(3), 263–296 (1976). doi: 10.1016/0012-365X(76)90030-3.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mateva Z.T., Topalova S.T.: Line spreads of PG(5,2). J. Comb. Des. 17(1), 90–102 (2009). doi: 10.1002/jcd.20198.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Miyakawa M., Munemasa A., Yoshiara S.: On a class of small \(2\)-designs over GF(q). J. Comb. Des. 3(1), 61–77 (1995). doi: 10.1002/jcd.3180030108.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nakić A., Pavčević M.O.: Tactical decompositions of designs over finite fields. Des. Codes Cryptogr. 77(1), 49–60 (2015). doi: 10.1007/s10623-014-9988-7.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Suzuki H.: On the inequalities of \(t\)-designs over a finite field. Eur. J. Combin. 11(6), 601–607 (1990). doi: 10.1016/S0195-6698(13)80045-5.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.8.3 (2016).

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations