Advertisement

Designs, Codes and Cryptography

, Volume 86, Issue 4, pp 785–802 | Cite as

Constructions of almost secure frameproof codes with applications to fingerprinting schemes

  • José Moreira
  • Marcel Fernández
  • Grigory Kabatiansky
Article
  • 111 Downloads

Abstract

This paper presents explicit constructions of fingerprinting codes. The proposed constructions use a class of codes called almost secure frameproof codes. An almost secure frameproof code is a relaxed version of a secure frameproof code, which in turn is the same as a separating code. This relaxed version is the object of our interest because it gives rise to fingerprinting codes of higher rate than fingerprinting codes derived from separating codes. The construction of almost secure frameproof codes discussed here is based on weakly biased arrays, a class of combinatorial objects tightly related to weakly dependent random variables.

Keywords

Separating code Secure frameproof code Fingerprinting Traitor tracing 

Mathematics Subject Classification

94B60 94B65 

Notes

Acknowledgements

We would like to thank the anonymous reviewers, whose valuable comments helped to improve the contents and presentation of this paper. M. Fernández has been supported by the Spanish Government through projects Consolider Ingenio 2010 CSD2007-00004 “ARES”, TEC2011-26491 “COPPI”, and TEC2015-68734-R (MINECO/FEDER) “ANFORA”.

References

  1. 1.
    Alon N., Goldreich O., Håstad J., Peralta R.: Simple constructions of almost \(k\)-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon N., Guruswami V., Kaufman T., Sudan M.: Guessing secrets efficiently via list decoding. ACM Trans. Algorithms 3(4), 1–16 (2007).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barg A., Blakley G.R., Kabatiansky G.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bierbrauer J., Schellwat H.: Almost independent and weakly biased arrays: efficient constructions and cryptologic applications. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 1880, pp. 533–544. Santa Barbara, CA (2000).Google Scholar
  5. 5.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 963, pp. 452–465. Santa Barbara, CA (1995).Google Scholar
  6. 6.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chor B., Fiat A., Naor M.: Tracing traitors. In: Proceedings of the International Cryptology Conference (CRYPTO). Lecture Notes in Computer Science (LNCS), vol. 839, pp. 480–491. Santa Barbara, CA (1994).Google Scholar
  8. 8.
    Chor B., Fiat A., Naor M., Pinkas B.: Tracing traitors. IEEE Trans. Inf. Theory 46(3), 893–910 (2000).CrossRefMATHGoogle Scholar
  9. 9.
    Chor B., Goldreich O., Hasted J., Freidmann J., Rudich S., Smolensky R.: The bit extraction problem or \(t\)-resilient functions. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 396–407. Singer Island, FL (1984).Google Scholar
  10. 10.
    Cohen G.D., Encheva S., Schaathun H.G.: On separating codes. Technical Report 2001D003, ENST, Paris, France (2001).Google Scholar
  11. 11.
    Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Technical Report 248. Department of Informatics, University of Bergen, Norway (2003).Google Scholar
  12. 12.
    Cohen G.D., Schaathun H.G.: Upper bounds on separating codes. IEEE Trans. Inf. Theory 50(6), 1291–1294 (2004).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fernández M., Kabatiansky G., Moreira J.: Almost separating and almost secure frameproof codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2696–2700. Saint Petersburg, Russia (2011).Google Scholar
  14. 14.
    Forney G.D.: Concatenated codes. Technical Report 440, Research Laboratory of Electronics, MIT, Cambridge, MA (1966).Google Scholar
  15. 15.
    Friedman A.D., Graham R.L., Ullman J.D.: Universal single transition time asynchronous state assignments. IEEE Trans. Comput. C–18(6), 541–547 (1969).CrossRefGoogle Scholar
  16. 16.
    Körner J., Simonyi G.: Separating partition systems and locally different sequences. SIAM J. Discret. Math. (SIDMA) 1(3), 355–359 (1988).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Moreira J., Fernández M., Kabatiansky G.: Constructions of almost secure frameproof codes based on small-bias probability spaces. In: Proceedings of the International Workshop on Security (IWSEC). Lecture Notes in Computer Science (LNCS), vol. 8231, pp. 53–67. Okinawa, Japan (2013).Google Scholar
  18. 18.
    Moreira J., Fernández M., Kabatiansky G.: Almost separating and almost secure frameproof codes over \(q\)-ary alphabets. Des. Codes Cryptogr. 80(1), 11–28 (2016).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Naor J., Naor M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. (SICOMP) 22(4), 838–856 (1993).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pinsker M.S., Sagalovich Y.L.: Lower bound on the cardinality of code of automata’s states. Probl. Inf. Transm. 8(3), 59–66 (1972).Google Scholar
  21. 21.
    Sagalovich Y.L.: Completely separating systems. Probl. Inf. Transm. 18(2), 140–146 (1982).MathSciNetMATHGoogle Scholar
  22. 22.
    Sagalovich Y.L.: Separating systems. Probl. Inf. Transm. 30(2), 105–123 (1994).MathSciNetMATHGoogle Scholar
  23. 23.
    Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86(2), 595–617 (2000).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Tardos G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 1–24 (2008).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Vazirani U.V.: Randomness, adversaries and computation. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley (1986).Google Scholar
  27. 27.
    Vazirani U.V., Vazirani V.V.: Efficient and secure pseudo-random number generation. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 458–463. Singer Island, FL (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • José Moreira
    • 1
  • Marcel Fernández
    • 1
  • Grigory Kabatiansky
    • 2
    • 3
  1. 1.Department of Network EngineeringUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Skolkovo Institute of Science and Technology (Skoltech)SkolkovoRussia
  3. 3.National Research University Higher School of Economics (HSE)MoscowRussia

Personalised recommendations