Advertisement

Designs, Codes and Cryptography

, Volume 82, Issue 1–2, pp 197–209 | Cite as

Cover-free codes and separating system codes

  • A. G. D’yachkovEmail author
  • I. V. VorobyevEmail author
  • N. A. Polyanskii
  • V. Yu. Shchukin
Article

Abstract

We give some relations between the asymptotic rates of cover-free (CF) codes, separating system (SS) codes and completely separating system (CSS) codes. We also provide new upper bounds on the asymptotic rate of SS codes based on known results for CF and CSS codes. Finally, we derive a random coding bound for the asymptotic rate of SS codes and give tables of numerical values corresponding to our improved upper bounds.

Keywords

Separating system codes Cover-free codes Completely separating system codes Frameproof codes Digital fingerprinting 

Mathematics Subject Classification

94B25 94B65 

Notes

Acknowledgments

I.V. Vorobyev, N.A. Polyanskii and V.Yu. Shchukin have been supported in part by the Russian Science Foundation under Grant No. 14-50-00150.

References

  1. 1.
    Barg A., Blakley G.R., Kabatiansky G.A.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(5), 852–865 (2003).Google Scholar
  2. 2.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).Google Scholar
  3. 3.
    Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Technical Report 248, Department of Informatics, University of Bergen, Norway (2003).Google Scholar
  4. 4.
    D’yachkov A.G., Macula A.J., Vilenkin P.A., Torney D.C.: Families of finite sets in which no intersection of \({\ell }\) sets is covered by the union of \(s\) others. J. Comb. Theory Ser. A 99(2), 195–218 (2002).Google Scholar
  5. 5.
    D’yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin VYu: Bounds on the rate of disjunctive codes. Probl. Inf. Transm. 50(1), 27–56 (2014).Google Scholar
  6. 6.
    D’yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu.: Cover-free codes and separating system codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2894–2898, IEEE, Hong Kong (2015).Google Scholar
  7. 7.
    Engel K.: Interval packing and covering in the Boolean lattice. Comb. Prob. Comput. 5(4), 373–384 (1996).Google Scholar
  8. 8.
    Friedman A.D., Graham R.L., Ullman J.D.: Universal single transition time asynchronous state assignments. IEEE Trans. Comput. 18(6), 541–547 (1969).Google Scholar
  9. 9.
    Lebedev V.S.: Asymptotic upper bound for the rate of \((w, r)\) cover-free codes. Probl. Inf. Transm. 39(4), 317–323 (2003).Google Scholar
  10. 10.
    Mago G.: Monotone functions in sequential circuits. IEEE Trans. Comput. 22(10), 928–933 (1973).Google Scholar
  11. 11.
    Mitchell C.J., Piper F.C.: Key storage in secure networks. Discret. Appl. Math. 21(3), 215–228 (1988).Google Scholar
  12. 12.
    Sagalovich Yu.L.: Cascade codes of automata states. Probl. Inf. Transm. 14(2), 77–85 (1978).Google Scholar
  13. 13.
    Sagalovich Yu.L.: Completely separating systems. Probl. Inf. Transm. 18(2), 140–146 (1982).Google Scholar
  14. 14.
    Sagalovich Yu.L.: Separating systems. Probl. Inf. Transm. 30(2), 105–123 (1994).Google Scholar
  15. 15.
    Shangguan C., Wang X., Ge G., Miao Y.: New bounds for frameproof codes, preprint, 2014. arxiv:1411.5782v1
  16. 16.
    Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).Google Scholar
  17. 17.
    Stinson D.R., Wei R., Chen K.: On generalized separating hash families. J. Comb. Theory Ser. A 115(1), 105–120 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations