Designs, Codes and Cryptography

, Volume 82, Issue 1–2, pp 449–467 | Cite as

Algebraic decoding of folded Gabidulin codes

  • Hannes BartzEmail author
  • Vladimir Sidorenko


An efficient interpolation-based decoding algorithm for \(h\)-folded Gabidulin codes is presented that can correct rank errors beyond half the minimum rank distance for any code rate \(0\le R\le 1\). The algorithm serves as a list decoder or as a probabilistic unique decoder and improves upon existing schemes, especially for high code rates. A probabilistic unique decoder with adjustable decoding radius is presented. The decoder outputs a unique solution with high probability and requires at most \(\mathcal {O}({s^2n^2})\) operations in \(\mathbb {F}_{q^m}\), where \(1\le s\le h\) is a decoding parameter and \(n\le m\) is the length of the unfolded code over \(\mathbb {F}_{q^m}\). An upper bound on the average list size of folded Gabidulin codes and on the decoding failure probability of the decoder is given. Applying the ideas to a list decoding algorithm by Mahdavifar and Vardy (List-decoding of subspace codes and rank-metric codes up to Singleton bound, ISIT 2012) improves the performance when used as probabilistic unique decoder and gives an upper bound on the failure probability.


Rank-metric codes Folded Gabidulin codes Probabilistic unique decoding Interpolation-based decoding 

Mathematics Subject Classification

Primary 94B35 94B05 



The authors would like to thank Gerhard Kramer, Joschi Brauchle and Johan S. R. Nielsen for fruitful discussions and helpful comments. H. Bartz was supported by the German Ministry of Education and Research in the framework of an Alexander von Humboldt-Professorship.


  1. 1.
    Bartz H.: List and probabilistic unique decoding of high-rate folded Gabidulin codes. In: International Workshop on Coding and Cryptography (WCC) (2015).Google Scholar
  2. 2.
    Bartz H., Wachter-Zeh A.: Efficient interpolation-based decoding of interleaved subspace and Gabidulin codes. In: Proceedings of 52nd Annual Allerton Conference on Communication, Control, and Computing (2014).Google Scholar
  3. 3.
    Cheung K.M.: The weight distribution and randomness of linear codes. TDA Progress Report (42–97), pp. 208–215 (1989).Google Scholar
  4. 4.
    Delsarte P.: Bilinear forms over a finite field with applications to coding Theory. J. Comb. Theory 25(3), 226–241 (1978).Google Scholar
  5. 5.
    Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 3–16 (1985).Google Scholar
  6. 6.
    Gadouleau M., Yan Z.: Packing and covering properties of rank metric codes. IEEE Trans. Inf. Theory 54(9), 3873–3883 (2008).Google Scholar
  7. 7.
    Guruswami V., Rudra A.: Explicit codes achieving list decoding capacity: error-correction with optimal redundancy. IEEE Trans. Inf. Theory 54(1), 135–150 (2008).Google Scholar
  8. 8.
    Guruswami V., Wang C.: Explicit rank-metric codes list-decodable with optimal redundancy. Electron. Colloq. Comput. Complex. (ECCC) 20, (2013).Google Scholar
  9. 9.
    Guruswami V., Xing C.: List decoding Reed–Solomon, algebraic–geometric, and Gabidulin subcodes up to the singleton bound. Electron. Colloq. Comput. Complex. 19(146), (2012).Google Scholar
  10. 10.
    Guruswami V., Narayanan S., Wang C.: List decoding subspace codes from insertions and deletions. In: Proceedings of 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, New York, pp. 183–189 (2012). doi: 10.1145/2090236.2090252.
  11. 11.
    Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1996).Google Scholar
  12. 12.
    Loidreau P., Overbeck R.: Decoding rank errors beyond the error correcting capability. In: International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), pp. 186–190 (2006).Google Scholar
  13. 13.
    Mahdavifar H., Vardy A.: List-decoding of subspace codes and rank-metric codes up to Singleton bound. In: IEEE International Symposium on Information Theory (ISIT), pp. 1488–1492 (2012). doi: 10.1109/ISIT.2012.6283511.
  14. 14.
    McEliece R.J.: On the average list size for the Guruswami–Sudan decoder. In: International Symposium on Communication Theory and Applications (ISCTA) (2003).Google Scholar
  15. 15.
    Ore Ø.: On a special class of polynomials. Trans. Am. Math. Soc. 35, 559–584 (1933).Google Scholar
  16. 16.
    Sidorenko V.R., Jiang L., Bossert M.: Skew-feedback shift-register synthesis and decoding interleaved Gabidulin codes. IEEE Trans. Inf. Theory 57(2), 621–632 (2011).Google Scholar
  17. 17.
    Vadhan S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(13), 1–336 (2011).Google Scholar
  18. 18.
    Wachter-Zeh A.: Bounds on list decoding of rank-metric codes. IEEE Trans. Inf. Theory 59(11), 7268–7277 (2013).Google Scholar
  19. 19.
    Wachter-Zeh, A., Zeh, A.: List and unique error-erasure decoding of interleaved Gabidulin codes with interpolation techniques. Des. Codes Cryptogr. 73(2), 547–570 (2014). doi: 10.1007/s10623-014-9953-5.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Communications EngineeringTechnical University of MunichMunichGermany
  2. 2.Institute for Information Transmission ProblemsRussian Academy of ScienceMoscowRussia

Personalised recommendations