Designs, Codes and Cryptography

, Volume 81, Issue 1, pp 153–168 | Cite as

Complete weight enumerators of some linear codes and their applications

  • Chengju Li
  • Sunghan Bae
  • Jaehyun Ahn
  • Shudi Yang
  • Zheng-An Yao


Recently, linear codes constructed from defining sets have been extensively studied. It was shown that the linear codes may have a few nonzero weights or be optimal if the defining sets are well chosen. The weight enumerators of these linear codes were also presented. In this paper, we investigate the complete weight enumerators of some linear codes constructed from the defining sets. As applications, we employ the explicit complete weight enumerators of the linear codes to construct constant composition codes and systematic authentication codes. A new class of optimal constant composition codes and three classes of asymptotically optimal systematic authentication codes are presented.


Complete weight enumerators Linear codes Exponential sums Constant composition codes Authentication codes 

Mathematics Subject Classification

94B05 11T71 11T23 94B60 94A62 



The authors are very grateful to the editor and the anonymous reviewers for their valuable comments and suggestions that improved the quality of this paper. This paper is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (ASARC, NRF-2007-0056093), the National Natural Science Foundation of China (Nos. 11171150, 11271381, 11431015, and 61472457), the Fundamental Research Funds for the Central Universities (No. 56XZA15002), the 973 Program of China (Grant No. 2011CB808000), and the Natural Science Foundation of Guangdong (Grant No. 2014A030313161).


  1. 1.
    Bae S., Li C., Yue Q.: On the complete weight enumerator of some reducible cyclic codes. Discret. Math. 338, 2275–2287 (2015).Google Scholar
  2. 2.
    Baumert L.D., McEliece R.J.: Weights of irreducible cyclic codes. Inf. Control 20(2), 158–175 (1972).Google Scholar
  3. 3.
    Berndt B., Evans R., Williams K.: Gauss and Jacobi Sums. Wiley, New York (1997).Google Scholar
  4. 4.
    Blake I.F., Kith K.: On the complete weight enumerator of Reed-Solomon codes. SIAM J. Discret. Math. 4(2), 164–171 (1991).Google Scholar
  5. 5.
    Cai H., Zeng X., Helleseth T., Tang X., Yang Y.: A new construction of zero-difference balanced functions and its applications. IEEE Trans. Inf. Theory 59(8), 5008–5015 (2013).Google Scholar
  6. 6.
    Chu W., Colbourn C.J., Dukes P.: On constant composition codes. Discret. Appl. Math. 154, 912–929 (2006).Google Scholar
  7. 7.
    Coulter R.S.: Further evaluation of some Weil sums. Acta Arith. 86, 217–226 (1998).Google Scholar
  8. 8.
    Ding Y.: A construction for constant-composition codes. IEEE Trans. Inf. Theory 54(8), 3738–3741 (2008).Google Scholar
  9. 9.
    Ding C.: Optimal constant composition codes from zero-difference balanced functions. IEEE Trans. Inf. Theory 54(12), 5766–5770 (2008).Google Scholar
  10. 10.
    Ding C.: A class of three-weight and four-weight codes. In: Xing C., et al. (eds.) Proceedings of the Second International Workshop on Coding Theory and Cryptography. Lecture Notes in Computer Science, vol. 5557, pp. 34–42. Springer, Berlin (2009).Google Scholar
  11. 11.
    Ding C.: Codes from Difference Sets. World Scientific, Singapore (2014).Google Scholar
  12. 12.
    Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015).Google Scholar
  13. 13.
    Ding K., Ding C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014).Google Scholar
  14. 14.
    Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory (2015). doi: 10.1109/TIT.2015.2473861.
  15. 15.
    Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007).Google Scholar
  16. 16.
    Ding C., Wang X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005).Google Scholar
  17. 17.
    Ding C., Yin J.: Algebraic constructions of constant composition codes. IEEE Trans. Inf. Theory 51(4), 1585–1589 (2005).Google Scholar
  18. 18.
    Ding C., Yuan J.: A family of optimal constant-composition codes. IEEE Trans. Inf. Theory 51(10), 3668–3671 (2005).Google Scholar
  19. 19.
    Ding C., Fu F.W., Kløve T., Wei V.W.K.: Constructions of permutation arrays. IEEE Trans. Inf. Theory 48(4), 977–980 (2002).Google Scholar
  20. 20.
    Ding C., Helleseth T., Kløve T., Wang X.: A general construction of authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007).Google Scholar
  21. 21.
    Ding C., Luo J., Niederreiter H.: Two-weight codes punctured from irreducible cyclic codes. In: Li Y., et al. (eds.) Proceedings of the First Worshop on Coding and Cryptography, pp. 119–124. World Scientific, Singapore (2008).Google Scholar
  22. 22.
    Ding C., Wang Q., Xiong M.: Three new classes of zero-difference balanced functions with applications. IEEE Trans. Inf. Theory 60(4), 2407–2413 (2014).Google Scholar
  23. 23.
    Feng K., Luo J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14, 390–409 (2008).Google Scholar
  24. 24.
    Feng T., Momihara K., Xiang Q.: Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes. Combinatorica 35(4), 413–434 (2015).Google Scholar
  25. 25.
    Fu F.W., Kløve T.: Two constructions of permutation arrays. IEEE Trans. Inf. Theory 50(5), 881–883 (2004).Google Scholar
  26. 26.
    Gao F., Ge G.: Optimal ternary constant composition codes of weight four and distance five. IEEE Trans. Inf. Theory 57(6), 3742–3757 (2011).Google Scholar
  27. 27.
    Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006).Google Scholar
  28. 28.
    Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory, 2nd edn. GTM 84, Springer, Berlin (1990).Google Scholar
  29. 29.
    Kith K.: Complete weight enumeration of Reed-Solomon codes. Master’s Thesis, Department of Electrical and Computing Engineering, University of Waterloo, Waterloo, Ontario, Canada (1989).Google Scholar
  30. 30.
    Kuzmin A.S., Nechaev A.A.: Complete weight enumerators of generalized Kerdock code and linear recursive codes over Galois rings. In: Proceedings of the WCC99 Workshop on Coding and Cryptography, pp. 332–336, Paris, France, 11–14 January (1999)Google Scholar
  31. 31.
    Kuzmin A.S., Nechaev A.A.: Complete weight enumerators of generalized Kerdock code and related linear codes over Galois rings. Discret. Appl. Math. 111, 117–137 (2001).Google Scholar
  32. 32.
    Li C., Yue Q., Fu F.W.: Complete weight enumerators of some cyclic codes. Des. Codes Cryptogr. (2015). doi: 10.1007/s10623-015-0091-5.
  33. 33.
    Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, London (1983).Google Scholar
  34. 34.
    Luo J., Helleseth T.: Constant composition codes as subcodes of cyclic codes. IEEE Trans. Inf. Theory 57(11), 7482–7488 (2011).Google Scholar
  35. 35.
    Luo J., Tang Y.: A new class of constant composition codes. In Proceedings of International Workshop on Signal Design and Its Applications, Fukuoka, Japan, pp. 138–140 (2009).Google Scholar
  36. 36.
    Luo Y., Fu F.W., Vinck A.J.H., Chen W.: On constant composition codes over \({\mathbb{Z}}_q\). IEEE Trans. Inf. Theory 49(11), 3010–3016 (2003).Google Scholar
  37. 37.
    Ma S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4, 221–261 (1994).Google Scholar
  38. 38.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).Google Scholar
  39. 39.
    MacWilliams F.J., Mallows C.L., Sloane N.J.A.: Generalizations of Gleason’s theorem on weight enumerators of self-dual codes. IEEE Trans. Inf. Theory 18(6), 794–805 (1972).Google Scholar
  40. 40.
    Milenkovic O., Kashyap N.: On the Design of Codes for DNA Computing. Lecture Notes in Computer Science, vol. 3969. Springer, Berlin (2006).Google Scholar
  41. 41.
    Rees R.S., Stinson D.R.: Combinatorial Characterizations of Authentication Codes. Des. Codes Cryptogr. 7, 239–259 (1996).Google Scholar
  42. 42.
    Simmons G.J.: Authentication Theory/Coding Theory. In: Advances in Cryptology—CRYPTO’84. Lecture Notes in Computer Science, vol. 196, pp. 411–431. Springer, Berlin (1984).Google Scholar
  43. 43.
    Xiang Q.: Recent progress in algebraic design theory. Finite Fields Appl. 11, 622–653 (2005).Google Scholar
  44. 44.
    Yan J., Yin J.: A class of optimal constant composition codes from GDRP. Des. Codes Cryptogr. 50, 61–76 (2009).Google Scholar
  45. 45.
    Yang J., Xia L.: Complete solving of the explicit evaluation of Gauss sums in the index 2 case. Sci. China Math. 53(9), 2525–2542 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chengju Li
    • 1
  • Sunghan Bae
    • 1
  • Jaehyun Ahn
    • 2
  • Shudi Yang
    • 3
    • 4
  • Zheng-An Yao
    • 3
  1. 1.Department of MathematicsKAISTDaejeonKorea
  2. 2.Department of MathematicsChungnam National UniversityDaejeonKorea
  3. 3.Department of MathematicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  4. 4.School of Mathematical SciencesQufu Normal UniversityShandongPeople’s Republic of China

Personalised recommendations