Advertisement

Designs, Codes and Cryptography

, Volume 79, Issue 3, pp 423–441 | Cite as

Further results on rational points of the curve \(\displaystyle y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) over \({\mathbb {F}}_{q^m}\)

  • Ayhan Coşgun
  • Ferruh Özbudak
  • Zülfükar Saygı
Article
  • 239 Downloads

Abstract

Let q be a positive power of a prime number. For arbitrary positive integers hnm with n dividing m and arbitrary \(\gamma ,\alpha \in {\mathbb {F}}_{q^m}\) with \(\gamma \ne 0\) the number of \({\mathbb {F}}_{q^m}\)-rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \) is determined in many cases (Özbudak and Saygı, in: Larcher et al. (eds.) Applied algebra and number theory, 2014) with odd q. In this paper we complete some of the remaining cases for odd q and we also present analogous results for even q.

Keywords

Artin–Schreier type curve Rational points Algebraic curves Finite fields 

Mathematics Subject Classification

11G20 14G05 14G50 

Notes

Acknowledgments

We would like to thank the anonymous referees for their insightful and helpful comments that improved the presentation of this paper.

References

  1. 1.
    Niederreiter H., Xing C.: Algebraic Geometry in Coding Theory and Cryptography. Princeton University Press, Princeton (2009).Google Scholar
  2. 2.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009).Google Scholar
  3. 3.
    Tsfasman M.A., Vladut S.G., Nogin D.: Algebraic Geometric Codes: Basic Notions. American Mathematical Society, Providence (2007).Google Scholar
  4. 4.
    Niederreiter H., Xing C.: Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge (2001).Google Scholar
  5. 5.
    Özbudak F., Saygı Z.: Rational points of the curve \(y^{q^n}-y=\gamma x^{q^h+1} - \alpha \). In: Larcher G., Pillichshammer F., Winterhof A., Xing C. (eds.) Applied Algebra and Number Theory. Cambridge University Press, Cambridge (2014).Google Scholar
  6. 6.
    Coulter R.S.: The number of rational points of a class of Artin–Schreier curves. Finite Fields Appl. 8, 397–413 (2002).Google Scholar
  7. 7.
    Wolfmann J.: The number of points on certain algebraic curves over finite fields. Commun. Algebra 17, 2055–2060 (1989).Google Scholar
  8. 8.
    Klapper A.: Cross-correlations of quadratic form sequences in odd characteristic. Des. Codes Cryptogr. 11(3), 289–305 (1997).Google Scholar
  9. 9.
    Coulter R.S.: Explicit evaluations of some Weil sums. Acta Arith. 83, 241–251 (1998).Google Scholar
  10. 10.
    Coulter R.S.: Further evaluations of some Weil sums. Acta Arith. 86, 217–226 (1998).Google Scholar
  11. 11.
    Coulter R.S.: On the evaluation of a class of Weil sums in characteristic 2. N. Z. J. Math. 28, 171–184 (1999).Google Scholar
  12. 12.
    Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ayhan Coşgun
    • 1
  • Ferruh Özbudak
    • 2
  • Zülfükar Saygı
    • 3
  1. 1.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Mathematics and Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of MathematicsTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations