Advertisement

Designs, Codes and Cryptography

, Volume 80, Issue 1, pp 11–28 | Cite as

Almost separating and almost secure frameproof codes over \(q\)-ary alphabets

  • José Moreira
  • Marcel Fernández
  • Grigory Kabatiansky
Article

Abstract

In this paper we discuss some variations of the notion of separating code for alphabets of arbitrary size. We show how the original definition can be relaxed in two different ways, namely almost separating and almost secure frameproof codes, yielding two different concepts. The new definitions enable us to obtain codes of higher rate, at the expense of satisfying the separating property partially. These new definitions become useful when complete separation is only required with high probability, rather than unconditionally. We also show how the codes proposed can be used to improve the rate of existing constructions of families of fingerprinting codes.

Keywords

Separating code Secure frameproof code Fingerprinting Traitor tracing 

Mathematics Subject Classification

94B60 94B65 

Notes

Acknowledgments

We would like to thank the anonymous Reviewers, whose insightful comments and observations helped to improve the contents and presentation of the paper. J. Moreira and M. Fernández have been supported in part by the Spanish Government through Projects Consolider-Ingenio 2010 CSD2007-00004 “ARES” and TEC2011-26491 “COPPI”, and by the Catalan Government through Grant 2014 SGR-1504. G. Kabatiansky has been supported in part by the Russian Foundation for Basic Research through Grants RFBR 13-01-12458, RFBR 13-07-00978, and RFBR 14-01-93108.

References

  1. 1.
    Barg A., Blakley G.R., Kabatiansky G.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003).Google Scholar
  2. 2.
    Blakley G.R., Kabatiansky G.: Random coding technique for digital fingerprinting codes: fighting two pirates revisited. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), p. 203. IEEE, Chicago (2004).Google Scholar
  3. 3.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. In: Proceedings of the International Cryptology Conference (CRYPTO), Santa Barbara. Lecture Notes in Computer Science, vol. 963, pp. 452–465. Springer, Berlin (1995).Google Scholar
  4. 4.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).Google Scholar
  5. 5.
    Chor B., Fiat A., Naor M.: Tracing traitors. In: Proceedings International Cryptology Conference on Advances in Cryptology (CRYPTO), Santa Barbara. Lecture Notes Computer Science, vol. 839, pp. 480–491. Springer, Berlin (1994).Google Scholar
  6. 6.
    Chor B., Fiat A., Naor M., Pinkas B.: Tracing traitors. IEEE Trans. Inf. Theory 46(3), 893–910 (2000).Google Scholar
  7. 7.
    Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Technical Report 248, Deptartment of Informatics, University of Bergen, Norway (2003).Google Scholar
  8. 8.
    Cohen G.D., Schaathun H.G.: Upper bounds on separating codes. IEEE Trans. Inf. Theory 50(6), 1291–1294 (2004).Google Scholar
  9. 9.
    Csiszár I., Körner J.: Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd edn. Cambridge University Press, Cambridge (2011).Google Scholar
  10. 10.
    Fernández M., Kabatiansky G., Moreira J.: Almost separating and almost secure frameproof codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2696–2700. IEEE, Saint Petersburg (2011).Google Scholar
  11. 11.
    Forney G.D.: Concatenated codes. Technical Repot 440, Research Laboratory of Electronics, MIT, Cambridge, MA (1966).Google Scholar
  12. 12.
    Friedman A.D., Graham R.L., Ullman J.D.: Universal single transition time asynchronous state assignments. IEEE Trans. Comput. 18(6), 541–547 (1969).Google Scholar
  13. 13.
    Guruswami V., Sudan M.: Improved decoding of Reed–Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999).Google Scholar
  14. 14.
    Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963).Google Scholar
  15. 15.
    Körner J., Simonyi G.: Separating partition systems and locally different sequences. SIAM J. Discret. Math. (SIDMA) 1(3), 355–359 (1988).Google Scholar
  16. 16.
    Pinsker M.S., Sagalovich Y.L.: Lower bound on the cardinality of code of automata’s states. Probl. Inf. Transm. 8(3), 59–66 (1972).Google Scholar
  17. 17.
    Sagalovich Y.L.: Completely separating systems. Probl. Inf. Transm. 18(2), 140–146 (1982).Google Scholar
  18. 18.
    Sagalovich Y.L.: Separating systems. Probl. Inf. Transm. 30(2), 105–123 (1994).Google Scholar
  19. 19.
    Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).Google Scholar
  20. 20.
    Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86(2), 595–617 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • José Moreira
    • 1
    • 2
  • Marcel Fernández
    • 1
  • Grigory Kabatiansky
    • 3
    • 4
  1. 1.Department of Network EngineeringUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.SCYTL Secure Electronic VotingBarcelonaSpain
  3. 3.National Research University Higher School of Economics (HSE)MoscowRussia
  4. 4.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations