Designs, Codes and Cryptography

, Volume 76, Issue 3, pp 551–569 | Cite as

Diagonally cyclic equitable rectangles

  • Anthony B. Evans
  • David Fear
  • Rebecca J. Stones


An equitable \((r,c;v)\)-rectangle is an \(r \times c\) matrix \(L=(l_{ij})\) with symbols from \(\mathbb {Z}_v\) in which each symbol appears in every row either \(\left\lceil c/v \right\rceil \) or \(\left\lfloor c/v \right\rfloor \) times and in every column either \(\left\lceil r/v \right\rceil \) or \(\left\lfloor r/v \right\rfloor \) times. We call \(L\) diagonally cyclic if \(l_{(i+1) (j+1)}=l_{ij}+1\), where the rows are indexed by \(\mathbb {Z}_r\) and columns indexed by \(\mathbb {Z}_c\). We give a constructive proof of necessary and sufficient conditions for the existence of a diagonally cyclic equitable \((r,c;v)\)-rectangle.


Equitable rectangle Latin square Latin rectangle  Orthogonal array 

Mathematical Subclass Classification




Stones supported by NSFC grant 61170301. Stones was also partially supported by AARMS.


  1. 1.
    Asplund J., Keranen M.S.: Mutually orthogonal equitable latin rectangles. Discret. Math. 311, 1015–1033 (2011).Google Scholar
  2. 2.
    Bose R.C.: On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares. Sankhyā 3, 323–338 (1938).Google Scholar
  3. 3.
    Bryant D., Buchanan M., Wanless I.M.: The spectrum for quasigroups with cyclic automorphisms and additional symmetries. Discret. Math. 304, 821–833 (2009).Google Scholar
  4. 4.
    Bryant D., Egan J., Maenhaut B., Wanless I.M.: Indivisible plexes in Latin squares. Des. Codes Cryptogr. 52, 93–105 (2009).Google Scholar
  5. 5.
    Bryant D., Maenhaut B.M., Wanless I.M.: New families of atomic Latin squares and perfect \(1\)-factorisations. J. Comb. Theory Ser. A 113, 608–624 (2004).Google Scholar
  6. 6.
    Cao H., Dinitz J., Kreher D., Stinson D., Wei R.: On orthogonal generalized equitable rectangles. Des. Codes Cryptogr. 51, 225–230 (2009).Google Scholar
  7. 7.
    Dénes J., Keedwell A.D.: Latin Squares and their Applications. Academic Press, New York (1974).Google Scholar
  8. 8.
    Drake D.A.: Partial \(\lambda \)-geometries and generalized hadamard matrices over groups. Can. J. Math. 31, 617–627 (1979).Google Scholar
  9. 9.
    Euler L.: Recherches sur une nouvelle espéce de quarrés magiques, Verh. Zeeuwsch. Gennot. Weten. Vliss. 9, 85–239 (1782). Eneström E530, Opera Omnia OI7, pp. 291–392.Google Scholar
  10. 10.
    Evans A.B.: Orthomorphism Graphs of Groups. Springer, Berlin (1992).Google Scholar
  11. 11.
    Guo W., Ge G.: The existence of generalized mix functions. Des. Codes Cryptogr. 50, 107–113 (2009).Google Scholar
  12. 12.
    Moore E.H.: Tactical memoranda I-III. Am. J. Math. 18, 264–303 (1896).Google Scholar
  13. 13.
    Ristenpart T., Rogaway P.: How to enrich the message space of a cipher. Lecture Notes in Computer Science. Vol. 4593, pp. 101–118. Springer, Berlin (2007).Google Scholar
  14. 14.
    Stinson D.R.: Generalized mix functions and orthogonal equitable rectangles. Des. Codes Cryptogr. 45, 347–357 (2007).Google Scholar
  15. 15.
    Stones D.S., Vojtěchovský P., Wanless I.M.: Cycle structure of autotopisms of quasigroups and latin squares. J. Comb. Des. 20, 227–263 (2012).Google Scholar
  16. 16.
    Wanless I.M.: Diagonally cyclic Latin squares. Eur. J. Comb. 25, 393–413 (2004).Google Scholar
  17. 17.
    Wanless I.M.: Atomic Latin squares based on cyclotomic orthomorphisms. Electron. J. Comb. 12, R22–R23 (2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anthony B. Evans
    • 1
  • David Fear
    • 2
  • Rebecca J. Stones
    • 2
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsWright State UniversityDaytonUSA
  2. 2.School of Mathematical SciencesMonash UniversityClaytonAustralia
  3. 3.Clayton School of Information TechnologyMonash UniversityClaytonAustralia
  4. 4.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations