Designs, Codes and Cryptography

, Volume 76, Issue 2, pp 173–178 | Cite as

On some bounds on the minimum distance of cyclic codes over finite fields

  • Ferruh Özbudak
  • Seher Tutdere
  • Oğuz Yayla


Recently, A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. Bezzateev gave a method to obtain new lower bounds on the minimum distance of cyclic codes over finite fields. Here we present some results on a generalization of this method. Then we apply it to several examples of cyclic codes and compare some known bounds with the bounds obtained by this generalization.


Bounds on the minimum distance Cyclic codes Zeh–Bezzateev bound Zeh–Zeh–Bezzateev bound 

Mathematics Subject Classification

94A24 94B15 94A55 



We first thank the referees for providing comments which helped in improving the contents of this paper. The author Seher Tutdere is partially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the National Postdoctoral Research Scholarship No: 2218.


  1. 1.
    Bose R.C., Chaudhuri, D.K.R.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960).Google Scholar
  2. 2.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).Google Scholar
  3. 3.
    Boston N.: Bounding minimum distances of cyclic codes using algebraic geometry. Electron. Notes Discret. Math. 6, 385–394 (2001).Google Scholar
  4. 4.
    Grayson D.R., Stillman M.E.: Macaulay2, a software system for research in algebraic geometry.
  5. 5.
    Hartmann C., Tzeng K.: Generalizations of the BCH bound. Inf. Control 20(5), 489–498 (1972).Google Scholar
  6. 6.
    Hartmann C., Tzeng K.: Decoding beyond the BCH bound using multiple sets of syndrome sequences. IEEE Trans. Inf. Theory 20(2), 292–295 (1974).Google Scholar
  7. 7.
    Hartmann C., Tzeng K., Chien R.: Some results on the minimum distance structure of cyclic codes. IEEE Trans. Inf. Theory 18(3), 402–409 (1972).Google Scholar
  8. 8.
    Hocquenghem A.: Codes correcteurs d-Erreurs. Chiffres (Paris) 2, 147–156 (1959).Google Scholar
  9. 9.
    Roos C.: A generalization of the BCH bound for cyclic codes, including the Hartmann–Tzeng bound. J. Comb. Theory Ser. A 33(2), 229–232 (1982).Google Scholar
  10. 10.
    Roos C.: A new lower bound for the minimum distance of a cyclic code. IEEE Trans. Inf. Theory 29(3), 330–332 (1983).Google Scholar
  11. 11.
    Stichtenoth H.: Algebraic function fields and codes. Graduate Texts in Mathematics, 2nd edn, p. 254. Springer, Berlin (2009).Google Scholar
  12. 12.
    Zeh A., Bezzateev S.V.: A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes. Des. Codes Cryptogr. (2012). doi: 10.1007/s10623-012-9721-3.
  13. 13.
    Zeh A., Wachter-Zeh A., Bezzateev S.V.: Decoding cyclic codes up to a new bound on the minimum distance. IEEE Trans. Inf. Theory 58(6), 3951–3960 (2012).Google Scholar
  14. 14.
    Zeh A., Wachter-Zeh A., Gadouleau M., Bezzateev S.V.: Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes. Proceedings of IEEE ISIT-2013, pp. 126–130. Istanbul, Turkey (2013). doi: 10.1109/ISIT.2013.6620201.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of MathematicsGebze Institute of TechnologyGebze/KocaeliTurkey
  3. 3.Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations