Advertisement

Designs, Codes and Cryptography

, Volume 78, Issue 3, pp 703–712 | Cite as

Weight enumerator of some irreducible cyclic codes

  • Fabio Enrique Brochero MartínezEmail author
  • Carmen Rosa Giraldo Vergara
Article

Abstract

In this article, we show explicitly all possible weight enumerators for every irreducible cyclic code of length \(n\) over a finite field \({\mathbb {F}}_q\), in the case which each prime divisor of \(n\) is also a divisor of \(q-1\).

Keywords

Cyclic codes Weight enumerator Minimum distance 

Mathematics Subject Classification

12E05 94B05 

References

  1. 1.
    Brochero Martínez F.E., Giraldo Vergara C.R., Batista de Oliveira L.: Explicit factorization of \(x^{n}-1\in {\mathbb{F}}_q[x]\). Des. Codes Cryptogr. (Accepted).Google Scholar
  2. 2.
    Chen B., Li L., Tuerhong R.: Explicit factorization of \(x^{2^mp^n}-1 \) over a finite field. Finite Fields Appl. 24, 95–104 (2013).Google Scholar
  3. 3.
    Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55, 955–960 (2009).Google Scholar
  4. 4.
    Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313, 434–446 (2013).Google Scholar
  5. 5.
    Farrell P.G., Castieira Moreira J.: Essentials of Error-Control Coding. Wiley, Hoboken (2006).Google Scholar
  6. 6.
    Fitzgerald R.W., Yucas J.L.: Explicit factorization of cyclotomic and Dickson polynomials over finite fields. In Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 4547, pp. 1–10. Springer, Berlin (2007).Google Scholar
  7. 7.
    Golay M.J.E.: Notes on digital coding. Proc. IRE 37, 657 (1949).Google Scholar
  8. 8.
    Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Addison-Wesley, Boston (1983).Google Scholar
  9. 9.
    Meyn H.: Factorization of the cyclotomic polynomials \(x^{2^n}+1\) over finite fields. Finite Fields Appl. 2, 439–442 (1996).Google Scholar
  10. 10.
    Sharma A., Bakshi G.: The weight distribution of some irreducible cyclic codes. Finite Fields Appl. 18, 144–159 (2012).Google Scholar
  11. 11.
    Wang L., Wang Q.: On explicit factors of cyclotomic polynomials over finite fields. Des. Codes Cryptogr. 63(1), 87–104 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fabio Enrique Brochero Martínez
    • 1
    Email author
  • Carmen Rosa Giraldo Vergara
    • 1
  1. 1.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations