Designs, Codes and Cryptography

, Volume 78, Issue 3, pp 693–702 | Cite as

The automorphism group of an extremal [120, 60, 24] code does not contain elements of order 29

  • Javier de la Cruz
  • Michael Kiermaier
  • Alfred Wassermann
Article

Abstract

We prove that the automorphism group of an extremal binary self-dual \([120, 60, 24]\) code does not contain elements of order \(29\). Combining this with the known results in the literature, one obtains that \(|G|\) divides \(2^a\cdot 3\cdot 5\cdot 7\cdot 19\cdot 23\) for a non-negative integer \(a\).

Keywords

Self-dual code Extremal code Automorphism group Doubly-even code 

Mathematics Subject Classification

94B05 11T71 

References

  1. 1.
    Assmus Jr. E.F., Mattson Jr. H.F.: New 5-designs. J. Comb. Theory 6, 122–151 (1969).Google Scholar
  2. 2.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).Google Scholar
  3. 3.
    Bouyuklieva S., de la Cruz J., Willems W.: On the automorphism group of a binary self-dual [120, 60, 24] code. AAECC 24(3–4), 201–214 (2013).Google Scholar
  4. 4.
    Bouyuklieva S., Malevich A., Willems W.: Automorphisms of extremal self-dual codes. IEEE Trans. Inf. Theory 56, 2091–2096 (2010).Google Scholar
  5. 5.
    de la Cruz J.: On extremal self-dual codes of length 120. Des. Codes Cryptogr. (2013). doi:10.1007/s10623-013-9902-8.
  6. 6.
    de la Cruz J., Willems W.: On extremal self-dual code of length 96. IEEE Trans. Inf. Theory 57, 6820–6828 (2011).Google Scholar
  7. 7.
    Gleason A.M.: Weight polynomials of self-dual codes and the MacWilliams identities. Actes du Congrès International des Mathèmaticiens (Nice. 1970), Tome 3, pp. 211–215. Gauthier-Villars, Paris (1971).Google Scholar
  8. 8.
    Grassl M.: Bounds on the minimum distance of linear codes and quantum codes [Online]. Available: http://www.codetables.de.
  9. 9.
    Huffman W.C.: Automorphisms of codes with applications to extremal doubly even codes of length 48. IEEE Trans. Inf. Theory IT- 28, 511–521 (1982).Google Scholar
  10. 10.
    Mallows C.L., Sloane N.J.A.: An upper bound for self-dual codes. Inf. Control 22, 188–200 (1973).Google Scholar
  11. 11.
    Pless V., Huffman W.C.: (eds.) Handbook of Coding Theory. Elsevier, Amsterdam, (1998).Google Scholar
  12. 12.
    Sloane N.J.A.: Is there a [72, 36], \(d=16\) self-dual code? IEEE Trans. Inf. Theory 19, 251 (1973).Google Scholar
  13. 13.
    Yorgov V.Y.: Binary self-dual codes with automorphisms of odd order, Probl. Peredachi Informatsii. vol. 19, pp. 11–24, (1983). ( in Russian).Google Scholar
  14. 14.
    Yorgov V.Y.: A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inf. Theory IT- 33, 77–82 (1987).Google Scholar
  15. 15.
    Yorgov V., Yorgov D.: The automorphism group of a self dual binary [72,36,16] code does not contain \(\rm Z_4\) (preprint, arXiv:1310.2570v2).
  16. 16.
    Zhang S.: On the nonexistence of extremal self-dual codes. Discret. Appl. Math. 91, 277–286 (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Javier de la Cruz
    • 1
  • Michael Kiermaier
    • 2
  • Alfred Wassermann
    • 2
  1. 1.Departamento de MatemáticasUniversidad del NorteBarranquillaColombia
  2. 2.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations