Advertisement

Designs, Codes and Cryptography

, Volume 78, Issue 2, pp 527–531 | Cite as

On subspace codes

  • Antonio CossidenteEmail author
  • Francesco Pavese
Article

Abstract

It is shown that any projective bundle of \(\mathrm{PG}(2,q)\) gives rise to a \(q\)-ary \((6, q^{6}\) \(+2q^{2}+2q+1,4;3)\) subspace code.

Keywords

Projective bundle Subspace code Klein quadric Singer cyclic group 

Mathematics Subject Classification

51E15 05B25 

References

  1. 1.
    Baker R.D., Brown J.M.N., Ebert G.L., Fisher J.C.: Projective bundles. Bull. Belg. Math. Soc. Simon Stevin. 1(3), 329–336 (1994).Google Scholar
  2. 2.
    Bray J.N., Holt D.F., Roney-Dougal Derek, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013).Google Scholar
  3. 3.
    Cannon J., Playoust C.: An introduction to MAGMA. University of Sydney, Sydney (1993).Google Scholar
  4. 4.
    Glynn D.G.: Finite projective planes and related combinatorial systems. Ph.D. thesis, Adelaide University (1978).Google Scholar
  5. 5.
    Glynn D.G.: On finite division algebras. J. Comb. Theory Ser. A. 44(2), 253–266 (1987).Google Scholar
  6. 6.
    Hirschfeld J.W.P.H.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1985).Google Scholar
  7. 7.
    Hirschfeld J.W.P.H.: Projective Geometries over Finite Fields. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998).Google Scholar
  8. 8.
    Honold T., Kiermaier M., Kurz S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum distance \(4\). arXiv:1311.0464v1, preprint.
  9. 9.
    Huppert B.: Endliche Gruppen, I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer, Berlin (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità della BasilicataPotenzaItaly

Personalised recommendations