Advertisement

Designs, Codes and Cryptography

, Volume 74, Issue 1, pp 75–111 | Cite as

Binary and \(q\)-ary Tardos codes, revisited

Article

Abstract

The Tardos code is a much studied collusion-resistant fingerprinting code, with the special property that it has asymptotically optimal length \(m\propto c_0^2\), where \(c_0\) is the number of colluders. In this paper we give alternative security proofs for the Tardos code, working with the assumption that the strongest coalition strategy is position-independent. We employ the Bernstein inequality and Bennett inequality instead of the typically used Markov inequality. This proof technique requires fewer steps and slightly improves the tightness of the bound on the false negative error probability. We present new results on code length optimization, for both small and asymptotically large coalition sizes.

Keywords

Traitor tracing Tardos fingerprinting Collusion 

Mathematics Subject Classification

94B99 

Notes

Acknowledgments

We thank Dion Boesten, Jeroen Doumen, Thijs Laarhoven, Antonino Simone, and Benne de Weger for useful discussions. We thank Wil Kortsmit for his help with numerical integrations. This research was funded by STW Sentinels (CREST project, 10518).

References

  1. 1.
    Amiri E., Tardos G.: High rate fingerprinting codes and the fingerprinting capacity. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 336–345 (2009).Google Scholar
  2. 2.
    Bennett G.: Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57(297), 33–45 (1962).Google Scholar
  3. 3.
    Bernstein S.N.: Theory of Probability. (1927).Google Scholar
  4. 4.
    Blayer O., Tassa T.: Improved versions of Tardos’ fingerprinting scheme. Des. Codes Cryptogr. 48(1), 79–103 (2008).Google Scholar
  5. 5.
    Boesten D., Škorić B.: Asymptotic fingerprinting capacity for non-binary alphabets. In: Information Hiding 2011, Lecture Notes in Computer Science, vol. 6958, pp. 1–13. Springer, Berlin (2011).Google Scholar
  6. 6.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)Google Scholar
  7. 7.
    Charpentier A., Xie F., Fontaine C., Furon T.: Expectation maximization decoding of Tardos probabilistic fingerprinting code. In: Media Forensics and Security, SPIE Proceedings, vol. 7254, pp. 72540 (2009).Google Scholar
  8. 8.
    Charpentier A., Fontaine C., Furon T., Cox I.J.: An asymmetric fingerprinting scheme based on Tardos codes. In: Information Hiding, Lecture Notes in Computer Science, vol. 6958, pp. 43–58. Springer, Berlin (2011).Google Scholar
  9. 9.
    Furon T., Guyader A., Cérou F.: On the design and optimization of Tardos probabilistic fingerprinting codes. In: Information Hiding, Lecture Notes in Computer Science, vol. 5284, pp. 341–356. Springer, Berlin (2008).Google Scholar
  10. 10.
    Furon T., Pérez-Freire L.: Worst case attacks against binary probabilistic traitor tracing codes. CoRR, abs/0903.3480 (2009).Google Scholar
  11. 11.
    Furon T., Pérez-Freire L., Guyader A., Cérou F.: Estimating the minimal length of Tardos code. In: Information Hiding, Lecture Notes in Computer Science, vol. 5806, pp. 176–190 (2009).Google Scholar
  12. 12.
    He S., Wu M.: Joint coding and embedding techniques for multimedia fingerprinting. TIFS 1, 231–248 (2006).Google Scholar
  13. 13.
    Huang Y.W., Moulin P.: Capacity-achieving fingerprint decoding. In: IEEE Workshop on Information Forensics and Security, pp. 51–55 (2009).Google Scholar
  14. 14.
    Knessl C., Keller J.B.: Partition asymptotics from recursion equations. Siam J. Appl. Math. 50(2), 323–338 (1990).Google Scholar
  15. 15.
    Laarhoven T., de Weger B.M.M.: Optimal symmetric Tardos traitor tracing schemes (2011). http://arxiv.org/abs/1107.3441.
  16. 16.
    Meerwald P., Furon T.: Towards joint Tardos decoding: the ‘Don Quixote’ algorithm. In: Information Hiding. Lecture Notes in Computer Science, vol. 6958, pp. 28–42. Springer, Berlin (2011).Google Scholar
  17. 17.
    Moulin P.: Universal fingerprinting: capacity and random-coding exponents. In: Preprint arXiv:0801.3837v2, avilable at http://arxiv.org/abs/0801.3837 (2008).
  18. 18.
    Nuida K., Hagiwara M., Watanabe H., Imai H.: Optimal probabilistic fingerprinting codes using optimal finite random variables related to numerical quadrature. CoRR, abs/cs/0610036 (2006).Google Scholar
  19. 19.
    Nuida K., Fujitsu S., Hagiwara M., Kitagawa T., Watanabe H., Ogawa K., Imai H.: An improvement of discrete Tardos fingerprinting codes. Des. Codes Cryptogr. 52(3), 339–362 (2009).Google Scholar
  20. 20.
    Nuida K.: Short collusion-secure fingerprint codes against three pirates. In: Information Hiding, Lecture Notes in Computer Science, vol. 6387, pp. 86–102. Springer, Berlin (2010).Google Scholar
  21. 21.
    Schaathun H.G.: On error-correcting fingerprinting codes for use with watermarking. multimed. Syst. 13(5–6), 331–344 (2008).Google Scholar
  22. 22.
    Simone A., Škorić B.: Asymptotically false-positive-maximizing attack on non-binary Tardos codes. In: Information Hiding, Lecture Notes in Computer Science, vol. 6958, pp. 14–27. Springer, Berlin (2011).Google Scholar
  23. 23.
    Simone A., Škorić B.: Accusation probabilities in Tardos codes: beyond the Gaussian approximation. Des. Codes Cryptogr. 63(3), 379–412 (2012)Google Scholar
  24. 24.
    Škorić B., Katzenbeisser S., Celik M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Des. Codes Cryptogr. 46(2), 137–166 (2008).Google Scholar
  25. 25.
    Škorić B., Vladimirova T.U., Celik M.U., Talstra J.C.: Tardos fingerprinting is better than we thought. IEEE Trans. Inf. Theory 54(8), 3663–3676 (2008)Google Scholar
  26. 26.
    Škorić B., Katzenbeisser S., Schaathun H.G., Celik M.U.: Tardos fingerprinting codes in the Combined Digit Model. IEEE Trans. Inf. Forensics Secur. 6(3), 906–919 (2011)Google Scholar
  27. 27.
    Tardos G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 116–125 (2003).Google Scholar
  28. 28.
    Xie F., Furon T., Fontaine C.: On-off keying modulation and Tardos fingerprinting. In: Proc. 10th Workshop on Multimedia and Security (MM &Sec), ACM, pp. 101–106 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Eindhoven University of Technology EindhovenThe Netherlands

Personalised recommendations