Designs, Codes and Cryptography

, Volume 73, Issue 1, pp 209–216 | Cite as

Bent functions on partial spreads

Article

Abstract

For an arbitrary prime \(p\) we use partial spreads of \(\mathbb{F }_p^{2m}\) to construct two classes of bent functions from \(\mathbb{F }_p^{2m}\) to \(\mathbb{F }_p\). Our constructions generalize the classes \(PS^{(-)}\) and \(PS^{(+)}\) of binary bent functions which are due to Dillon.

Keywords

Bent function Partial spread 

Mathematics Subject Classification (2010)

94C10 51E14 

References

  1. 1.
    Dillon J.F.: Elementary Hadamard difference sets. PhD thesis, University of Maryland (1974).Google Scholar
  2. 2.
    Dillon J.F.: Elementary Hadamard difference sets. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic University, Boca Raton, 1975), pp. 237–249. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg (1975).Google Scholar
  3. 3.
    Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52(5), 2018–2032 (2006).Google Scholar
  4. 4.
    Hirschfeld J.W.P.: Finite projective spaces of three dimensions. The Clarendon Press, Oxford University Press, New York (1985).Google Scholar
  5. 5.
    Hou X.: \(q\)-ary bent functions constructed from chain rings. Finite Fields Appl. 4(1), 55–61 (1998).Google Scholar
  6. 6.
    Jia W., Zeng X., Helleseth T., Li C.: A class of binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 58(9), 6054–6063 (2012).Google Scholar
  7. 7.
    Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985).Google Scholar
  8. 8.
    Li N., Helleseth T., Tang X., Kholosha A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inform. Theory 59(3), 1818–1831 (2013).Google Scholar
  9. 9.
    Nyberg K.: Constructions of bent functions and difference sets. Advances in cryptology, EUROCRYPT ’90 (Aarhus, 1990), Lecture Notes in Computer Science, vol. 473, pp. 151–160. Springer, Berlin (1991).Google Scholar
  10. 10.
    Nyberg K.: Perfect nonlinear S-boxes. Advances in cryptology, EUROCRYPT ’91 (Brighton, 1991), Lecture Notes in Computer Science, vol. 547, pp. 378–386. Springer, Berlin (1991).Google Scholar
  11. 11.
    Rajola S., Scafati Tallini M.: Maximal partial spreads in PG(3, \(q\)). J. Geom. 85(1–2), 138–148 (2006).Google Scholar
  12. 12.
    Rothaus O.: On bent functions. IDA CRD Working Paper No. 169 (1966).Google Scholar
  13. 13.
    Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations