Designs, Codes and Cryptography

, Volume 71, Issue 3, pp 433–457

A unified approach to combinatorial key predistribution schemes for sensor networks

Article

Abstract

There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario.

Keywords

Sensor network Key predistribution Combinatorial design 

Mathematics Subject Classification (2010)

94A60 05B15 05B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bag S., Saha A., Sarkar P.: Highly resilient key predistribution scheme using transversal designs and Reed Muller codes for wireless sensor network. In: CNSA, 2011. CCIS, vol. 196, pp. 344–355 (2011).Google Scholar
  2. 2.
    Blackburn S.R., Etzion T., Martin K.M., Paterson M.B.: Efficient key predistribution for grid-based wireless sensor networks. In: ICITS, 2008. Lecture Notes in Computer Science, vol. 5155, pp. 64–69 (2008).Google Scholar
  3. 3.
    Blackburn S.R., Etzion T., Martin K.M., Paterson M.B.: Distinct-difference configurations: multihop paths and key predistribution in sensor networks. IEEE Trans. Inf. Theory 56, 3961–3972 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Blanchard J.L.: A construction for orthogonal arrays with strength t ≥ 3. Discret. Math. 137, 35–44 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Blom R.: An optimal class of symmetric key generation systems. In: EUROCRYPT, 1984. Lecture Notes in Computer Science, vol. 209, pp. 335–338 (1985).Google Scholar
  6. 6.
    Blundo C., De Santis A., Herzberg A., Kutten S., Vaccaro U., Yung M.: Perfectly secure key distribution for dynamic conferences. Inf. Comput. 146, 1–23 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bose M., Dey A., Mukerjee R.: Key predistribution schemes for distributed sensor networks via block designs. Des. Codes Cryptogr. doi:10.1007/s10623-011-9590-1.
  8. 8.
    Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–43 (1952)Google Scholar
  9. 9.
    Çamtepe S., Yener B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: ESORICS, 2004. Lecture Notes in Computer Science, vol. 3193, pp. 293–308 (2004).Google Scholar
  10. 10.
    Çamtepe S., Yener B.: Key distribution mechanisms for wireless sensor networks: a survey. Technical Report TR-05-07. Rensselaer Polytechnic Institute (2005).Google Scholar
  11. 11.
    Çamtepe S., Yener B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Trans. Netw. 15, 346–358 (2007)CrossRefGoogle Scholar
  12. 12.
    Chakrabarti D., Maitra S., Roy B.: A key pre-distribution scheme for wireless sensor networks: merging blocks in combinatorial design. In: ISC, 2005. Lecture Notes in Computer Science, vol. 3650, pp. 89–103 (2005).Google Scholar
  13. 13.
    Chakrabarti D., Maitra S., Roy B.: A hybrid design of key pre-distribution scheme for wireless sensor networks. In: ICISS, 2005. Lecture Notes in Computer Science, vol. 3803, pp. 228–238 (2005).Google Scholar
  14. 14.
    Chakrabarti D., Seberry J.: Combinatorial structures for design of wireless sensor networks. In: ACNS, 2006. Lecture Notes in Computer Science, vol. 3989, pp. 365–374 (2006).Google Scholar
  15. 15.
    Chan H., Perrig A., Song D.: Random key predistribution schemes for sensor networks. In: Proceedings of the 2003 symposium on security and privacy. IEEE Computer Society, pp. 197–213.Google Scholar
  16. 16.
    Chen C.-Y., Chao H.-C.: A survey of key predistribution in wireless sensor networks. Secur. Commun. Netw., to appear (published online, July 13, 2011).Google Scholar
  17. 17.
    Colbourn, C.J., Dinitz, J.H. (eds): Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, London (2007)MATHGoogle Scholar
  18. 18.
    Dhar A., Sarkar P.: Full communication in a wireless sensor network by merging blocks of a key predistribution using Reed Solomon codes. In: CCSAE, 2011. CS & IT, vol. 2, pp. 389–400 (2011).Google Scholar
  19. 19.
    Dong J.-W., Pei D.-Y., Wang X.-L.: A class of key predistribution schemes based on orthogonal arrays. J. Comput. Sci. Technol. 23, 825–831 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Dong J.-W., Pei D.-Y., Wang X.-L.: A key predistribution scheme based on 3-designs. In: Inscrypt, 2007. Lecture Notes in Computer Science, vol. 4990, pp. 81–92 (2008).Google Scholar
  21. 21.
    Du W., Deng J., Han Y., Varshney P., Katz J., Khalili A.: A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur. 8, 228–258 (2005)CrossRefGoogle Scholar
  22. 22.
    Eschenauer L., Gligor V.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM conference on computer and communications security. ACM Press, pp. 41–47 (2002).Google Scholar
  23. 23.
    Hanani H.: A class of three-designs. J. Comb. Theory A 26, 1–19 (1979)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  25. 25.
    Lee J., Stinson D.R.: Deterministic key predistribution schemes for distributed sensor networks. In: SAC, 2004. Lecture Notes in Computer Science, vol. 3357, pp. 294–307 (2005).Google Scholar
  26. 26.
    Lee J., Stinson D.R.: A combinatorial approach to key predistribution for distributed sensor networks. In: IEEE Wireless Communications and Networking Conference (WCNC 2005), vol. 2, pp. 1200–1205.Google Scholar
  27. 27.
    Lee J., Stinson D.R.: On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. Technical Report CACR 2005-40, Centre for Applied Cryptographic Research, University of Waterloo (2005). http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-40.pdf.
  28. 28.
    Lee J., Stinson D.R.: Common intersection designs. J. Comb. Des. 14, 251–269 (2006)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Lee J., Stinson D.R.: On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst. Secur. 11(2), article No. 1 (2008).Google Scholar
  30. 30.
    Liu D., Ning P., Li R.: Establishing pairwise keys in distributed sensor networks. ACM Trans. Inf. Syst. Secur. 8, 41–77 (2005)CrossRefGoogle Scholar
  31. 31.
    Martin K.M.: Discrete Structures in the Theory of Secret Sharing, PhD thesis, University of London (1991).Google Scholar
  32. 32.
    Martin K.M.: On the applicability of combinatorial designs to key predistribution for wireless sensor networks. In: IWCC, 2009. Lecture Notes in Computer Science, vol. 5557, pp. 124–145 (2009).Google Scholar
  33. 33.
    Martin K.M.: The rise and fall and rise of combinatorial key predistribution. In: SAC, 2010. Lecture Notes in Computer Science, vol. 6544, pp. 92–98 (2011).Google Scholar
  34. 34.
    Martin K.M., Paterson M.B., Stinson D.R.: Key predistribution for homogeneous wireless sensor networks with group deployment of nodes. ACM Trans. Sens. Netw. 7(2), article No. 11 (2010).Google Scholar
  35. 35.
    Mitra S., Dutta R., Mukhopadhyay S.: A hierarchical deterministic key pre-distribution for WSN using projective planes. In: ADHOCNETS, 2011. LNICST, vol. 89, pp. 16–31 (2012).Google Scholar
  36. 36.
    Payne S.E., Thas J.A.: Finite Generalized Quadrangles, 2nd edn. European Mathematical Society Publishing House, Zürich (2009).Google Scholar
  37. 37.
    Pei D.-Y.: Authentication Codes and Combinatorial Designs. Chapman & Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  38. 38.
    Pei D.-Y., Dong J.-W., Rong C.M.: A novel key predistribution scheme for wireless distributed sensor networks. Sci. China Inf. Sci. 53, 288–298 (2010)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Ruj S., Roy B.: Key predistribution schemes using partially balanced designs in wireless sensor networks. In: ISPA, 2007. Lecture Notes in Computer Science, vol. 4742, pp. 431–445 (2007).Google Scholar
  40. 40.
    Ruj S., Roy B.: Key predistribution schemes using codes in wireless sensor networks. In: Inscrypt, 2008. Lecture Notes in Computer Science, vol. 5487, pp. 275–288. Beijing, China (2008).Google Scholar
  41. 41.
    Ruj S., Roy B.: Revisiting key predistribution using transversal designs for a grid-based deployment scheme. Int. J. Distrib. Sens. Netw. 5, 660–674 (2008)CrossRefGoogle Scholar
  42. 42.
    Ruj S., Roy B.: Key predistribution using combinatorial designs for a grid-group deployment scheme in wireless sensor networks. ACM Trans. Sens. Netw. 6(1), article No. 4 (2009).Google Scholar
  43. 43.
    Ruj S., Seberry J., Roy B.: Key predistribution schemes using block designs in wireless sensor networks. In: 2009 international conference on computational science and engineering, pp. 873–878.Google Scholar
  44. 44.
    Sarkar P., Dhar A.: Assured full communication by merging blocks randomly in wireless sensor networks using Reed Solomon code for key predistribution. Int. J. Netw. Secur. Appl. 3, 203–215 (2011)Google Scholar
  45. 45.
    Sarkar P., Saha A., Bag S.: Security enhanced key predistribution scheme using transversal designs and Reed Muller codes for wireless sensor networks. Int. J. Netw. Secur. Appl. 3, 125–140 (2011)Google Scholar
  46. 46.
    Stinson D.R.: Combinatorial Designs, Constructions and Analysis. Springer, New York (2004)MATHGoogle Scholar
  47. 47.
    van Lint J.H., Wilson R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  48. 48.
    Wei R., Wu J.: Product construction of key distribution schemes for sensor networks. In: SAC, 2004. Lecture Notes in Computer Science, vol. 3357, pp. 280–293 (2004).Google Scholar
  49. 49.
    Xu L., Chen J., Wang X.: Cover-free family based efficient group key management strategy in wireless sensor network. J. Commun. 3, 51–58 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Economics, Mathematics and Statistics, BirkbeckUniversity of LondonLondonUK
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations