Designs, Codes and Cryptography

, Volume 69, Issue 2, pp 181–188 | Cite as

New results on variants of covering codes in Sierpiński graphs

  • Sylvain Gravier
  • Matjaž Kovše
  • Michel Mollard
  • Julien Moncel
  • Aline Parreau
Article

Abstract

In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpiński graphs. We compute the minimum size of such codes in Sierpiński graphs.

Keywords

Codes in graphs Identifying codes Locating-dominating codes Total-domination Sierpiński graphs 

Mathematics Subject Classification (2000)

05C78 94B25 05C69 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beaudou L., Gravier S., Klavžar S., Kovše M., Mollard M.: Covering codes in Sierpiński graphs. Discret. Math. Theor. Comput. Sci. 12(3), 63–74 (2010)Google Scholar
  2. 2.
    Ben-Haim Y., Gravier S., Lobstein A., Moncel J.: Adaptive identification in torii in the king lattice. Electron. J. Comb. 18(1), P116 (2011)MathSciNetGoogle Scholar
  3. 3.
    Ben-Haim Y., Litsyn S.: Exact minimum density of codes identifying vertices in the square grid. SIAM J. Discret. Math. 19(1), 69–82 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bertrand N., Charon I., Hudry O., Lobstein A.: Identifying and locating-dominating codes on chains and cycles. Eur. J. Comb. 25, 969–987 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Charon I., Cohen G., Hudry O., Lobstein A.: New identifying codes in the binary hamming space. Eur. J. Comb. 31, 491–501 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Charon I., Honkala I., Hudry O., Lobstein A.: The minimum density of an identifying code in the king lattice. Discret. Math. 276(1–3), 95–109 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen C., Lua C., Miao Z.: Identifying codes and locating-dominating sets on paths and cycles. Discret. Appl. Math. 159, 1540–1547 (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. Elsevier, Amsterdam (1997)MATHGoogle Scholar
  9. 9.
    Cull P., Nelson I.: Error-correcting codes on the Towers of Hanoi graphs. Discret. Math. 208(209), 157–175 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Exoo G., Junnila V., Laihonen T., Ranto S.: Improved bounds on identifying codes in binary Hamming spaces. Eur. J. Comb. 31, 813–827 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Foucaud F., Klasing R., Kosowski A., Raspaud A.: Bounds on the size of identifying codes in triangle-free graphs. (2010) (submitted for publication).Google Scholar
  12. 12.
    Gravier S., Klavžar S., Mollard M.: Codes and L(2, 1)-labelings in Sierpiński graphs. Taiwan. J. Math. 9, 671–681 (2005)MATHGoogle Scholar
  13. 13.
    Gravier S., Kovše M., Parreau A.: Generalized Sierpiński graphs. (in preparation).Google Scholar
  14. 14.
    Gravier S., Moncel J., Semri A.: Identifying codes of cartesian product of two cliques of the same size. Electron. J. Comb. 15(1), N4 (2008)MathSciNetGoogle Scholar
  15. 15.
    Gravier S., Moncel J., Semri A.: Identifying codes of cycles. Eur. J. Comb. 27(5), 767–776 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hinz A., Klavžar S., Milutinović U., Petr C.: The Tower of Hanoi: Myths and Maths (to appear).Google Scholar
  17. 17.
    Honkala I., Laihonen T.: On identifying codes in the king grid that are robust against edge deletions. Electron. J. Comb. 15(1), R3 (2008)MathSciNetGoogle Scholar
  18. 18.
    Jakovac M.: A 2-parametric generalization of Sierpiński gasket graphs. Ars Comb. (to appear).Google Scholar
  19. 19.
    Junnila V., Laihonen T.: Optimal identifying codes in cycles and paths. Graphs Comb. doi:10.1007/s00373-011-1058-6.
  20. 20.
    Klavžar S.: Coloring Sierpiński graphs and Sierpiński gasket graphs. Taiwan. J. Math. 12, 513–522 (2008)MATHGoogle Scholar
  21. 21.
    Klavžar S., Jakovac M.: Vertex-, edge-, and total-colorings of Sierpiński-like graphs. Discret. Math. 309, 1548–1556 (2009)MATHCrossRefGoogle Scholar
  22. 22.
    Klavžar S., Milutinović U.: Graphs S(n, k) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47(122), 95–104 (1997)MATHCrossRefGoogle Scholar
  23. 23.
    Klavžar S., Milutinović U., Petr C.: 1-perfect codes in Sierpiński graphs. Bull. Aust. Math. Soc. 66, 369–384 (2002)MATHCrossRefGoogle Scholar
  24. 24.
    Klavžar S., Mohar B.: Crossing numbers of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Li C.-K., Nelson I.: Perfect codes on the Towers of Hanoi graphs. Bull. Aust. Math. Soc. 57, 367–376 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lipscomb S.L., Perry J.C.: Lipscomb’s L(A) space fractalized in Hilbert’s l 2(A) space. Proc. Am. Math. Soc. 115, 1157–1165 (1992)MathSciNetMATHGoogle Scholar
  27. 27.
    Lipscomb S.L.: Fractals and Universal Spaces in Dimension Theory. Springer, Berlin (2009)MATHCrossRefGoogle Scholar
  28. 28.
    Lobstein A.: Watching systems, identifying, locating-dominating and discriminating codes in graphs, a bibliography. Published electronically at http://perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf. Accessed 12 March 2012.
  29. 29.
    Milutinović U.: Completeness of the Lipscomb space. Glas. Mat. Ser. III 27(47), 343–364 (1992)MathSciNetMATHGoogle Scholar
  30. 30.
    Mollard M.: On perfect codes in Cartesian product of graphs. Eur. J. Comb. 32(3), 398–403 (2011)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Moncel J.: Monotonicity of the minimum cardinality of an identifying code in the hypercube. Discret. Appl. Math. 154(6), 898–899 (2006)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Roberts D.L., Roberts F.S.: Locating sensors in paths and cycles: the case of 2-identifying codes. Eur. J. Comb. 29(1), 72–82 (2008)MATHCrossRefGoogle Scholar
  33. 33.
    Teguia A.M., Godbole A.P.: Sierpiński gasket graphs and some of their properties. Aust. J. Comb. 35, 181–192 (2006)MathSciNetMATHGoogle Scholar
  34. 34.
    Xu M., Thulasiraman K., Hu X.-D.: Identifying codes of cycles with odd orders. Eur. J. Comb. 29(7), 1717–1720 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sylvain Gravier
    • 1
    • 2
  • Matjaž Kovše
    • 3
    • 4
  • Michel Mollard
    • 1
    • 2
  • Julien Moncel
    • 1
    • 5
  • Aline Parreau
    • 1
    • 2
  1. 1.Fédération de recherche Maths à ModelerGrenobleFrance
  2. 2.Institut Fourier – UMR 5582 CNRS/Université Joseph FourierSt. Martin d’HèresFrance
  3. 3.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  4. 4.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  5. 5.CNRS – LAAS Université de Toulouse, UPS, INSA, INP, ISAE; UT1, UTM, LAASToulouse Cedex 4France

Personalised recommendations