Advertisement

Designs, Codes and Cryptography

, Volume 65, Issue 1–2, pp 55–63 | Cite as

A relationship between the diameter and the intersection number c 2 for a distance-regular graph

  • Jack H. Koolen
  • Jongyook Park
Article

Abstract

In this paper we will look at the relationship between the intersection number c 2 and the diameter of a distance-regular graph. We also give some tools to show that a distance-regular graph with large c 2 is bipartite, and a tool to show that if k D is too small then the distance-regular graph has to be antipodal.

Keywords

Distance-regular graphs Intersection numbers Hadamard graphs Hypercubes Diameter 

Mathematics Subject Classification (2000)

05E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biggs N.L., Boshier A.G., Shawe-Taylor J.: Cubic distance-regular graphs. J. Lond. Math. Soc. 33, 385–394 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brouwer A.E., Cohen A.M., Neumaier A.: Distance-regular graphs. Springer-Verlag, Berlin (1989)zbMATHGoogle Scholar
  3. 3.
    Caughman J.S. IV.: Intersection numbers of bipartite distance-regular graphs. Discret. Math. 163, 235–241 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Godsil C., Royle G.: Algebraic graph theory. Springer-Verlag, Berlin (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226(228), 593–616 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Koolen J.H.: On subgraphs in distance-regular graphs. J. Algebraic Combin. 1(4), 353–362 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Koolen J.H., Park J.: Distance-regular graphs with a 1 or c 2 at least half the valency. J. Comb. Theory A 119(3), 546–555 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsPOSTECHPohangSouth Korea

Personalised recommendations