Designs, Codes and Cryptography

, Volume 63, Issue 3, pp 321–330

Weight enumeration of codes from finite spaces

Open Access
Article

Abstract

We study the generalized and extended weight enumerator of the q-ary Simplex code and the q-ary first order Reed-Muller code. For our calculations we use that these codes correspond to a projective system containing all the points in a finite projective or affine space. As a result from the geometric method we use for the weight enumeration, we also completely determine the set of supports of subcodes and words in an extension code.

Keywords

Coding theory Weight enumeration Finite geometry 

Mathematics Subject Classification (2000)

05B25 11T71 

References

  1. 1.
    Assmus E.F. Jr.: On the Reed-Muller codes. Discrete Math. 106/107, 25–33 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Assmus E.F. Jr., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  3. 3.
    Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Heijnen P., Pellikaan G.R.: Generalized Hamming weights of q-ary Reed-Muller codes. IEEE Trans. Inform. Theory 44, 181–196 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Helleseth T., Kløve T., Mykkeltveit J.: The weight distribution of irreducible cyclic codes with block lengths n 1((q l−1)/n). Discrete Math. 18, 179–211 (1977)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jurrius R.P.M.J., Pellikaan G.R.: Algebraic geometric modeling in information theory. In: Codes, arrangements and matroids. Series on Coding Theory and Cryptology. World Scientific Publishing, Hackensack, NJ (2011) http://www.worldscibooks.com/series/sctc_series.shtml.
  7. 7.
    Katsman G.L., Tsfasman M.A.: Spectra of algebraic-geometric codes. Probl. Inform. Transm. 23, 19–34 (1987)MathSciNetMATHGoogle Scholar
  8. 8.
    Kløve T.: The weight distribution of linear codes over GF(q l) having generator matrix over GF(q). Discrete Math. 23, 159–168 (1978)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kløve T.: Support weight distribution of linear codes. Discrete Math. 106/107, 311–316 (1992)CrossRefGoogle Scholar
  10. 10.
    Mphako E.G.: Tutte polynomials of perfect matroid designs. Combin. Probab. Comput. 9, 363–367 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Simonis J.: The effective length of subcodes. AAECC 5, 371–377 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tsfasman M.A., Vlǎdut S.G.: Algebraic-geometric codes. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  14. 14.
    Tsfasman M.A., Vlǎdut S.G.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41, 1564–1588 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37, 1412–1418 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations