Advertisement

Designs, Codes and Cryptography

, Volume 65, Issue 1–2, pp 71–75 | Cite as

The graph with spectrum 141 240 (−4)10 (−6)9

  • Aart Blokhuis
  • Andries E. Brouwer
  • Willem H. HaemersEmail author
Open Access
Article
  • 366 Downloads

Abstract

We show that there is a unique graph with spectrum as in the title. It is a subgraph of the McLaughlin graph. The proof uses a strong form of the eigenvalue interlacing theorem to reduce the problem to one about root lattices.

Keywords

Graph spectrum Strongly regular graph Root lattice 

Mathematics Subject Classification (2000)

05C50 05E30 05C62 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Brouwer A.E., Haemers W.H.: Structure and uniqueness of the (81,20,1,6) strongly regular graph. Discrete Math. 106/107, 77–82 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  3. 3.
    van Dam E.R., Haemers W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)zbMATHGoogle Scholar
  4. 4.
    van Dam E.R., Haemers W.H.: Developments on spectral characterizations of graphs. Discrete Math. 309, 576–586 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cameron P.J., Goethals J.-M., Seidel J.J.: Strongly regular graphs having strongly regular subconstituents. J. Algebra 55, 257–280 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Weetman G.: Diameter bounds for graph extensions. J. Lond. Math. Soc. 50, 209–221 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Aart Blokhuis
    • 1
  • Andries E. Brouwer
    • 1
  • Willem H. Haemers
    • 2
    Email author
  1. 1.Department of MathematicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Econometrics & O.R.Tilburg UniversityTilburgThe Netherlands

Personalised recommendations