Designs, Codes and Cryptography

, Volume 59, Issue 1–3, pp 119–130

Directed graph representation of half-rate additive codes over GF(4)

Open Access
Article

Abstract

We show that (n, 2n) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n, 2n) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.

Keywords

Additive codes Quaternary codes Classification Graphs Circulant codes Formally self-dual codes 

Mathematics Subject Classification (2000)

94B05 05C30 

References

  1. 1.
    Bierbrauer J., Edel Y., Faina G., Marcugini S., Pambianco F.: Short additive quaternary codes. IEEE Trans. Inf. Theory 55(3), 952–954 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blokhuis A., Brouwer A.E.: Small additive quaternary codes. Eur. J. Combin. 25(2), 161–167 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bouchet A.: Graphic presentations of isotropic systems. J. Combin. Theory Ser. B 45(1), 58–76 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Calderbank A.R., Rains E.M., Shor P.M., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cannon J., Bosma W.: Handbook of Magma Functions, Version 2.14. http://magma.maths.usyd.edu.au/ (2007).
  6. 6.
    Choie Y., Solé P.: Broué-Enguehard maps and Atkin-Lehner involutions. Eur. J. Combin. 29(1), 24–34 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Danielsen L.E.: Graph-based classification of self-dual additive codes over finite fields. Adv. Math. Commun. 3(4), 329–348 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Danielsen L.E., Parker M.G.: On the classification of all self-dual additive codes over GF(4) of length up to 12. J. Combin. Theory Ser. A 113(7), 1351–1367 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gaborit P., Huffman W.C., Kim J.L., Pless V.: On additive GF(4) codes. In: Codes and Association Schemes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 56, pp. 135–149. American Mathematical Society, Providence, RI (2001)Google Scholar
  10. 10.
    Grassl M., Klappenecker A., Rötteler M.: Graphs, quadratic forms, and quantum codes. In: Proceedings of IEEE International Symposium on Information Theory, p. 45 (2002).Google Scholar
  11. 11.
    Gulliver T.A., Kim J.L.: Circulant based extremal additive self-dual codes over GF(4). IEEE Trans. Inform. Theory 50(2), 359–366 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gulliver T.A., Östergård P.R.J., Senkevitch N.I.: Optimal quaternary linear rate-1/2 codes of length ≤ 18. IEEE Trans. Inform. Theory 49(6), 1540–1543 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Han S., Kim J.L.: Formally self-dual additive codes over \({\mathbb{F}_4}\). J. Sym. Comput. 45(7), 787–799 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Han S., Kim J.L.: The nonexistence of near-extremal formally self-dual codes. Des. Codes Cryptogr. 51(1), 69–77 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim J.L., Mellinger K.E., Pless V.: Projections of binary linear codes onto larger fields. SIAM J. Discret. Math. 16(4), 591–603 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    McKay B.D.: Nauty User’s Guide, Version 2.2. http://cs.anu.edu.au/~bdm/nauty/ (2004).
  17. 17.
    Östergård P.R.J.: Classifying subspaces of Hamming spaces. Des. Codes Cryptogr. 27(3), 297–305 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pless, V.S., Huffman, W.C. (eds): Handbook of Coding Theory. North-Holland, Amsterdam (1998)MATHGoogle Scholar
  19. 19.
    Rains E.M., Sloane N.J.A.: Self-dual codes. In: Handbook of Coding Theory, pp. 177–294. North-Holland, Amsterdam (1998).Google Scholar
  20. 20.
    Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65(1), 012308 (2002)CrossRefGoogle Scholar
  21. 21.
    Sloane N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/ (2010).
  22. 22.
    Sloane N.J.A., Plouffe S.: The Encyclopedia of Integer Sequences. Academic Press, San Diego, CA (1995)MATHGoogle Scholar
  23. 23.
    Vanden Nest M., Dehaene J., De Moor B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69(2), 022316 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations