Designs, Codes and Cryptography

, Volume 59, Issue 1–3, pp 223–230 | Cite as

On zeros of Kloosterman sums

  • Petr LisoněkEmail author
  • Marko Moisio


A Kloosterman zero is a non-zero element of \({{\mathbb F}_q}\) for which the Kloosterman sum on \({{\mathbb F}_q}\) attains the value 0. Kloosterman zeros can be used to construct monomial hyperbent (bent) functions in even (odd) characteristic, respectively. We give an elementary proof of the fact that for characteristic 2 and 3, no Kloosterman zero in \({{\mathbb F}_q}\) belongs to a proper subfield of \({{\mathbb F}_q}\) with one exception that occurs at q = 16. It was recently proved that no Kloosterman zero exists in a field of characteristic greater than 3. We also characterize those binary Kloosterman sums that are divisible by 16 as well as those ternary Kloosterman sums that are divisible by 9. Hence we provide necessary conditions that Kloosterman zeros must satisfy.


Kloosterman sum Bent function Hyperbent function Division polynomial 

Mathematics Subject Classification (2000)

11L05 94A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Charpin P., Gong G.: Hyperbent functions, Kloosterman sums, and Dickson polynomials. IEEE Trans. Inform. Theory 54, 4230–4238 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Charpin P., Helleseth T., Zinoviev V.: Propagation characteristics of \({x\mapsto x\sp {-1}}\) and Kloosterman sums. Finite Fields Appl. 13, 366–381 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dillon J.F.: Elementary Hadamard difference sets. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic University, Boca Raton, FL, 1975), pp. 237–249. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, MB (1975).Google Scholar
  5. 5.
    Enge A.: Elliptic Curves and Their Applications to Cryptography: An Introduction. Kluwer, Boston (1999)Google Scholar
  6. 6.
    Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52, 2018–2032 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Helleseth T., Zinoviev V.: On Z 4-linear Goethals codes and Kloosterman sums. Des. Codes Cryptogr. 17, 269–288 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. The Clarendon Press, Oxford University Press, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Kononen K., Rinta-aho M., Väänänen K.: On integer values of Kloosterman sums. IEEE Trans. Inform. Theory 56(8), 4011–4013 (2010)CrossRefGoogle Scholar
  10. 10.
    Lachaud G., Wolfmann J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Leonard P.A., Williams K.S.: Quartics over GF(2n). Proc. Amer. Math. Soc. 36, 347–350 (1972)MathSciNetGoogle Scholar
  12. 12.
    Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997)Google Scholar
  13. 13.
    Lisoněk P.: On the connection between Kloosterman sums and elliptic curves. In: Golomb S. et al. (Eds) Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008) Lecture Notes in Computer Science, vol. 5203, pp. 182–187, Springer (2008).Google Scholar
  14. 14.
    Moisio M.: Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Arith. 132, 329–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Moisio M.: On certain values of Kloosterman sums. IEEE Trans. Inform. Theory 55, 3563–3564 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Silverman J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, Dordrecht (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stichtenoth H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Mathematics and StatisticsUniversity of VaasaVaasaFinland

Personalised recommendations