Designs, Codes and Cryptography

, Volume 59, Issue 1–3, pp 207–222

Bounds on the degree of APN polynomials: the case of x−1 + g(x)

Article
  • 112 Downloads

Abstract

In this paper we consider APN functions \({f:\mathcal{F}_{2^m}\to \mathcal{F}_{2^m}}\) of the form f(x) = x−1 + g(x) where g is any non \({\mathcal{F}_{2}}\)-affine polynomial. We prove a lower bound on the degree of the polynomial g. This bound in particular implies that such a function f is APN on at most a finite number of fields \({\mathcal{F}_{2^m}}\). Furthermore we prove that when the degree of g is less than 7 such functions are APN only if m ≤ 3 where these functions are equivalent to x3.

Keywords

Symmetric cryptography Sbox Differential cryptanalysis Almost perfect nonlinear 

Mathematics Subject Classification (2000)

94A60 11T71 14G50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bracken C., Byrne E., Markin N., McGuire G.: A few more quadratic APN functions. Cryptogr. Commun. (to appear).Google Scholar
  2. 2.
    Bracken C., Byrne E., Markin N., McGuire G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14(3), 703–714 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Budaghyan L., Carlet C.: Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inform. Theory 54(5), 2354–2357 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Budaghyan L., Carlet C., Leander G.: Constructing new APN functions from known ones. Finite Fields Appl. (in press).Google Scholar
  5. 5.
    Budaghyan L., Carlet C., Leander G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Deligne P.: La conjecture de Weil: I. Publications Mathematiques of l’IHES 43, 273–307 (1974)MathSciNetGoogle Scholar
  8. 8.
    Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ghorpade S.R., Lachaud G.: Etale cohomology Lefschetz theorems and the number of points of singular varieties over finite fields. Mosc. Math. J. 2, 589–631 (2002)MathSciNetMATHGoogle Scholar
  10. 10.
    Hernando F., McGuire G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. Preprint arXiv:0903.2016.Google Scholar
  11. 11.
    Janwa H., McGuire G., Wilson R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra 178(2), 665–676 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jedlicka D.: APN monomials over GF(2n) for infinitely many n. Finite Fields Appl. 13(4), 1006–1028 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lang S., Weil A.: Number of points of varieties in finite fields. Am. J. Math. 76(4), 819–827 (1954)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rodier F.: Borne sur le degré des polynômes presque parfaitement non-linéaires. Arxiv preprint math.AG/0605232, to be published with the proceedings of the conference AGCT-11 (2006).Google Scholar
  15. 15.
    Rodier F.: Bounds on the degrees of APN polynomials. To be published with the proceedings of the workshop BFCA08, Copenhagen, 2008 (2006).Google Scholar
  16. 16.
    Serre J.P.: Lettre à M. Tsfasman. Asterisque 198–200, 351–353 (1991)MathSciNetGoogle Scholar
  17. 17.
    Voloch F.: Symmetric cryptography and algebraic curves. In: Proceedings of the First SAGA Conference, Papeete, France (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Institut of Mathematiques of LuminyC.N.R.S.Marseille Cedex 9France

Personalised recommendations