Designs, Codes and Cryptography

, Volume 59, Issue 1–3, pp 183–191

Lower bounds on the size of spheres of permutations under the Chebychev distance

Open Access
Article

Abstract

Lower bounds on the number of permutations p of {1, 2, . . . , n} satisfying |pii| ≤ d for all i are given.

Keywords

Permutations Chebychev distance Spheres 

Mathematics Subject Classification (2000)

05A05 94B65 

References

  1. 1.
    Baltić V.: On the number of certain types of restricted permutations. In: Abstracts of Talks presented at the International Mathematical Conference, Topics in Mathematical Analysis and Graph Theory (MAGT). Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 18, 93–137 (2007).Google Scholar
  2. 2.
    Gould H.W.: An identity involving Stirling numbers. Ann. Inst. Stat. Math. 17, 265–269 (1965)CrossRefMATHGoogle Scholar
  3. 3.
    Jiang A., Mateescu R., Schwartz M., Bruck J.: Rank modulation for flash memories. In: Proceedings of IEEE International Symposium on Information Theory, pp. 1731–1735 (2008).Google Scholar
  4. 4.
    Jiang A., Schwartz M., Bruck J.: Error-correcting codes for rank modulation. In: Proceedings of IEEE International Symposium on Information Theory, pp. 1736–1740 (2008).Google Scholar
  5. 5.
    Kløve T.: Spheres of permutations under the infinity norm—permutations with limited displacement. Report no. 2008-376, Department of Informatics, University of Bergen, Norway. http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-376.pdf.
  6. 6.
    Kløve T., Lin T.-T., Tsai S.-C., Tzeng W.-G.: Permutation arrays under the Chebyshev distance. IEEE Trans. Inform. Theory 56(6), 2611–2617 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lagrange R.: Quelques résultats dans la métrique des permutations. Annales Scientifiques de l’École Normale Supérieure 79, 199–241 (1962)MathSciNetMATHGoogle Scholar
  8. 8.
    Lehmer D.H.: Permutations with strongly restricted displacements. In: Erdös P., Rńyi A., Sós V.T. (eds.) Combinatorial Theory and its Applications II. North Holland Publication, Amsterdam, pp. 755–770 (1970).Google Scholar
  9. 9.
    Peterson W.W., Weldon E.J.: Error-Correcting Codes. MIT Press, Cambridge (1972)MATHGoogle Scholar
  10. 10.
    Sloane N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/.
  11. 11.
    Stanley R.P.: Enumerative Combinatorics, vol. I. Cambridge University Press, Cambridge (1997)Google Scholar
  12. 12.
    Tamo I., Schwartz M.: Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme. IEEE Trans. Inform. Theory 56(6), 2551–2560 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    van Lint J.H., Wilson R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations