Advertisement

Designs, Codes and Cryptography

, Volume 58, Issue 2, pp 135–153 | Cite as

Optimal difference systems of sets and partition-type cyclic difference packings

  • Jianguo Lei
  • Cuiling FanEmail author
Article

Abstract

Difference systems of sets (DSSs) are combinatorial structures which were introduced by Levenshtein in connection with code synchronization. In this paper, we give some recursive constructions of DSSs by using partition-type cyclic difference packings, and obtain new infinite classes of optimal DSSs.

Keywords

Difference system of sets Code synchronization Partition-type difference packing Paley–Hadamard difference set Almost difference set 

Mathematics Subject Classification (2000)

05B30 94B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu K.T., Ding C., Helleseth T., Kumar D.V., Martinsen H.M.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Inform. Theory 47, 2934–2943 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chang Y., Ding C.: Constructions of external difference families and disjoint difference families. Des. Codes Cryptogr. 40, 167–185 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Colbourn C.J., Dinitz J.H.: The CRC Handbook of Combinatorial Designs. CRC, Boca Raton, FL (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cumming L.J.: A family of circular systematic comma-free codes. J. Comb. Math. Comb. Comput. 58, 87–96 (2006)Google Scholar
  5. 5.
    Cusick T.W., Ding C., Renvall A.: Stream Ciphers and Number Theory. North-Holland/Elsevier, Amsterdam, The Netherlands (1998). North-Holland Mathematical Libary 55.Google Scholar
  6. 6.
    Dillon J.F.: Multiplicative difference sets via additive characters. Des. Codes Cryptogr. 17, 224–235 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dillon J.F., Dobbertin H.: Cyclic difference sets with singer parameters. manuscript (1999).Google Scholar
  8. 8.
    Ding C.: Optimal and perfect difference systems of sets. J. Comb. Theory (A) 116, 109–119 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ding C., Helleseth T., Lam K.Y.: Several classes of sequences wiht three-level autocorrelation. IEEE Trans. Inform. Theory 45, 2606–2612 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ding C., Helleseth T., Martinsen H.M.: New families of binary sequences with optimal three-level autocorrelation. IEEE Trans. Inform. Theory 47, 428–433 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Dinitz J., Stinson D.R.: Difference sets, in Contemporary Design Theory: A Collection of Surveys. Wiley, New York (1992)Google Scholar
  12. 12.
    Fan C.L., Lei J.G., Chang Y.X.: Constructions of difference systems of sets and disjoint difference families. IEEE Trans. Inform. Theory 54, 3195–3201 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fuji-Hara R., Miao Y., Mishima M.: Optimal frequency hopping sequences: a combinatorial approach. IEEE Trans. Inform. Theory. 50, 2408–2420 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fuji-Hara R., Munemasa A., Tonchev V.D.: Hyperplane partitions and difference systems of sets. J. Comb. Theory (A) 113, 1699–1718 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ge G., Fuji-Hara R., Miao Y.: Further combinatorial constructions for optimal frequency-hopping sequences. J. Comb. Theory (A) 113, 1699–1718 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gordon B., Mills W.H., Welch L.R.: Some new difference sets. Can. J. Math. 14, 614–625 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lempel A., Greenberger H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inform. Theory 20, 90–94 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Levenshtein V.I.: One method of constructing quasilinear codes providing synchronization in the presence of errors. Prob. Inform. Transm. 7, 215–222 (1971)Google Scholar
  19. 19.
    Jungnickel D., Pott A. et al.: Difference sets. In: Pott, A. (eds) An Introduction to Difference Sets, Sequences and their Correlation Properties, vol. 542, pp. 259–295. Kluwer Academic Publishers, Netherlands (1999)Google Scholar
  20. 20.
    Muton Y., Tonchev V.D.: Difference systems of sets and cyclotomy. Discret. Math. to appear. In: Pott A., Kumar P.V., Helleseth T., Jungnickel D. (eds.) Properties, pp. 259–295. Kluwer, Amsterdam, The Netherlands (1999).Google Scholar
  21. 21.
    Ogata W., Kurosawa K., Stinson D.R., Saido H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discret. Math. 279, 383–405 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pott A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, p. 1601. Springer-Verlag, Berlin, Germany (1995).Google Scholar
  23. 23.
    Tonchev V.D.: Difference systems of sets and code synchronization. Rend. Sem. Mat. Messina. (II) 9, 217–226 (2003)MathSciNetGoogle Scholar
  24. 24.
    Tonchev V.D.: Partitions of difference sets and code synchronization. Finite Fields. Appl. 11, 601–621 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tonchev V.D., Wang H.: An algorithm for optimal difference systems of sets. J. Com. Optim. 14, 165–175 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Wang H.: A new bound for difference systems of sets. J. Comb. Math. Comb. Comput. 58, 161–168 (2006)zbMATHGoogle Scholar
  27. 27.
    Xiang Q.: Recent results on difference sets with classical parameters. In: Pott, A., Kumar, P.V., Helleseth, T., Jungnickel, D. (eds) Difference Sets, Sequences and Their Correlation Properties, pp. 419–434. Kluwer, Amsterdam, The Netherlands (1999)Google Scholar
  28. 28.
    Zhang Y., Lei J.G., Zhang S.P.: A new family of almost difference sets and some necessary conditions. IEEE Trans. Inform. Theory 52, 2052–2061 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of MathematicsBeijing Jiaotong UniversityBeijingChina
  2. 2.Institute of MathematicsHebei Normal UniversityShijiazhuangChina

Personalised recommendations