Designs, Codes and Cryptography

, Volume 58, Issue 1, pp 45–72 | Cite as

On Lai–Massey and quasi-Feistel ciphers

  • Aaram YunEmail author
  • Je Hong Park
  • Jooyoung Lee


We introduce a new notion called a quasi-Feistel cipher, which is a generalization of the Feistel cipher, and contains the Lai–Massey cipher as an instance. We show that most of the works on the Feistel cipher can be naturally extended to the quasi-Feistel cipher. From this, we give a new proof for Vaudenay’s theorems on the security of the Lai–Massey cipher, and also we introduce for Lai–Massey a new construction of pseudorandom permutation, analoguous to the construction of Naor–Reingold using pairwise independent permutations. Also, we prove the birthday security of (2b−1)- and (3b−2)-round unbalanced quasi-Feistel ciphers with b branches against CPA and CPCA attacks, respectively.


Lai–Massey cipher Feistel cipher Luby–Rackoff Block cipher design Pseudorandom function Indistinguishability 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iwata T., Yoshio T., Yuasa T., Kurosawa K.: Round security and super-pseudorandomness of MISTY type structure. In: Matsui, M. (eds) Fast Software Encryption—FSE 2001. Lecture Notes in Computer Science, vol. 2355., pp. 233–247. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Junod P., Vaudenay S.: FOX: a new family of block ciphers. In: Handschuh, H., Hasan, M.A. (eds) Selected Areas in Cryptography—SAC 2004. Lecture Notes in Computer Science, vol. 3357, pp. 114–129. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Lai X.: On the design and security of block ciphers. ETH Series in Information Processing, vol. 1. Hartung-Gorre, Konstanz (1992)Google Scholar
  4. 4.
    Lai X., Massey J.L.: A proposal for a new block encryption standard. In: Damgård, I. (eds) Advances in Cryptology—EUROCRYPT’90. Lecture Notes in Computer Science, vol, 473, pp. 389–404. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Luby M., Rackoff C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Matsui M.: New block encryption algorithm MISTY. In: Biham, E. (eds) Fast Software Encryption— FSE’97. Lecture Notes in Computer Science, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Maurer U., Pietrzak K.: The security of many-round Luby–Rackoff pseudo-random permutations. In: Biham, E. (eds) Advances in Cryptology—EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656, pp. 544–561. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Naor M., Reingold O.: On the construction of pseudorandom permutations: Luby–Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Patarin J.: Pseudorandom permutations based on the DES scheme. In: Cohen, G.D., Charpin, P. (eds) EUROCODE’90. Lecture Notes in Computer Science, vol. 514, pp. 193–204. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Patarin J.: Etude des générateurs de permutations pseudo-aléatoires basés sur le schéma du D.E.S. Ph.D. thesis, Université Paris VI (1991).Google Scholar
  11. 11.
    Patarin J.: New results on pseudorandom permutation generators based on the DES scheme. In: Feigenbaum, J. (eds) Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 301–312. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Patarin J.: How to construct pseudorandom and super pseudorandom permutations from one single pseudorandom function. In: Rueppel, R.A. (eds) Advances in Cryptology—EUROCRYPT ’92. Lecture Notes in Computer Science, vol. 658, pp. 256–266. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Patarin J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S. (eds) Fast Software Encryption—FSE ’98. Lecture Notes in Computer Science, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Patarin J.: Luby–Rackoff: 7 rounds are enough for \({2^{n(1-\epsilon)}}\) security. In: Boneh D., ((eds) Advances in Cryptology—CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Patarin J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin, M.K. (eds) Advances in Cryptology—CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Patarin J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds) Selected Areas in Cryptography—SAC 2008. Lecture Notes in Computer Science, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Patarin J., Nachef V., Berbain C.: Generic attacks on unbalanced Feistel schemes with contracting functions. In: Lai, X., Chen K., ((eds) Advances in Cryptology—ASIACRYPT 2006. Lecture Notes in Computer Science, vol. 4284, pp. 396–411. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Piret G.: Luby–Rackoff revisited: on the use of permutations as inner functions of a Feistel scheme. Des. Codes Cryptogr. 39(2), 233–245 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sakurai K., Zheng Y.: On non-pseudorandomness from block ciphers with provable immunity against linear cryptanalysis. IEICE Trans. Fundam. 80-A(1), 19–24 (1997)Google Scholar
  20. 20.
    Schneier B., Kelsey J.: Unbalanced Feistel networks and block cipher design. In: Gollmann, D. (eds) Fast Software Encryption—FSE ’96. Lecture Notes in Computer Science, vol. 1039, pp. 121–144. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Smith J.D.H.: An Introduction to Quasigroups and their Representations. Chapman & Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  22. 22.
    Sugita M.: Pseudorandomness of a block cipher MISTY. Technical Report of IEICE, ISEC96-9, pp 13–21 (1996).Google Scholar
  23. 23.
    Vaudenay S.: On the Lai–Massey scheme. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds) Advances in Cryptology—ASIACRYPT ’99. Lecture Notes in Computer Science, vol. 1716, pp. 8–19. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of Minnesota—Twin CitiesMinneapolisUSA
  2. 2.Electronics and Telecommunications Research InstituteYuseong-gu, DaejeonKorea

Personalised recommendations