Designs, Codes and Cryptography

, Volume 58, Issue 1, pp 35–44 | Cite as

Computing bilinear pairings on elliptic curves with automorphisms

  • Chang-An Zhao
  • Dongqing Xie
  • Fangguo Zhang
  • Jingwei Zhang
  • Bing-Long Chen
Article

Abstract

In this paper, we present a novel method for constructing a super-optimal pairing with great efficiency, which we call the omega pairing. The computation of the omega pairing requires the simple final exponentiation and short loop length in Miller’s algorithm which leads to a significant improvement over the previously known techniques on certain pairing-friendly curves. Experimental results show that the omega pairing is about 22% faster and 19% faster than the super-optimal pairing proposed by Scott at security level of AES 80 bits on certain pairing-friendly curves in affine coordinate systems and projective coordinate systems, respectively.

Keywords

Elliptic curves Automorphism Pairing based cryptography Weil pairing 

Mathematics Subject Classification (2000)

14H52 11G20 14G15 14Q05 11T71 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanzi R., Cohen H., Doche C., Frey G., Lange T., Nguyen K., Vercauteren F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL (2006)Google Scholar
  2. 2.
    Balasubramanian R., Koblitz N.: The improbability that an elliptic curve has sub-exponential discrete log problem under the Menezes–Okamoto–Vanstone algorithm. J. Cryptol. 11(2), 141–145 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barreto P.S.L.M., Galbraith S., ÓhÉigeartaigh C., Scott M.: Efficient pairing computation on supersingular Abelian varieties. Des. Codes Cryptogr. 42(3), 239–271 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barreto P.S.L.M., Kim H.Y., Lynn B., Scott M.: Efficient algorithms for pairing-based cryptosystems. In: Proceedings of Advances in Cryptology-Crypto 2002. Lecture Notes in Computer Science, vol. 2442, pp. 354–368. Springer-Verlag, Heidelberg (2002).Google Scholar
  5. 5.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3), 235–265 (1997). http://magma.maths.usyd.edu.au/.Google Scholar
  6. 6.
    Chatterjee S., Sarkar P., Barua R.: Efficient computation of tate pairingin projective coordinate over general characteristic fields, minus in ICISC 2004. Lecture Notes in Computer Science, vol. 3506, pp. 168C181. Springer-Verlag, Heidleberg (2005).Google Scholar
  7. 7.
    Duursma I., Gaudry P., Morain F.: Speeding up the discrete log computation on curves with automorphisms. In: Proceedings of Advances in Cryptology-AsiaCrypt 99. Lecture Notes in Computer Science, vol. 1716, pp. 203–121. Springer-Verlag, Heidleberg (1999).Google Scholar
  8. 8.
    Duursma I., Lee H.-S.: Tate pairing implementation for hyperelliptic curves y 2 = x px + d. In: Proceedings of Advances in Cryptology-AsiaCrypt’2003. Lecture Notes in Computer Science, vol. 2894, pp. 111–123. Springer-Verlag, Heidleberg (2003).Google Scholar
  9. 9.
    Galbraith S.:, Pairings, Ch.IX. Blake, I.F., Seroussi, G., Smart, N.P. (eds): Advances in Elliptic Curve Cryptography. Cambridge University Press, Cambridge (2005)Google Scholar
  10. 10.
    Galbraith S., Lin X.: Computing pairings using x-coordinates only. Des. Codes Cryptogr. 50(3), 305–324 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gallant R.P., Lambert R.J., Vanstone S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Proceedings of Advances in Cryptology-Crypto 2001. Lecture Notes in Computer Science, vol. 2139, pp. 190–200. Springer-Verlag, Heidleberg (2001).Google Scholar
  12. 12.
    Granger R., Smart N.P.: On computing products of pairings. Technical Report CSTR-06-013. University of Bristol, Bristol (2006)Google Scholar
  13. 13.
    Hess, F.: Pairing lattices. In: Pairing 2008. Lecture Notes in Computer Science, vol. 5209, pp. 18–38. Springer-Verlag, Heidleberg (2008).Google Scholar
  14. 14.
    Hess F., Smart N.P., Vercauteren F.: The Eta pairing revisited. IEEE Trans. Inform. Theory 52(10), 4595–4602 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    IEEE Std 1363-2000: Standard Specifications for Public-key Cryptography. IEEE P1363 Working Group (2000).Google Scholar
  16. 16.
    Kang B.G., Park J.H.: On the relationship between squared pairings and plain pairings. Inf. Process. Lett. 97(6), 219–224 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lee E., Lee H.-S., Park C.-M.: Efficient and generalized pairing computation on Abelian varieties. IEEE Trans. Inform. Theory 55(4), 1793–1803 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Matsuda S., Kanayama N., Hess F., Okamoto E.: Optimised versions of the Ate and twisted Ate pairings. In: Cryptography and Coding. Lecture Notes in Computer Science, vol. 4887, pp. 302–312. Springer-Verlag, Heidleberg (2007).Google Scholar
  19. 19.
    Menezes A.J., Koblitz N.: Pairing-based cryptography at high security levels. In: Cryptography and Coding. Lecture Notes in Computer Science, vol. 3796, pp. 13–36. Springer-Verlag, Heidleberg (2005).Google Scholar
  20. 20.
    Miller V.S.: Short programs for functions on curves. http://crypto.stanford.edu/miller/miller.pdf.
  21. 21.
    Miller V.S.: The Weil pairing and its efficient calculation. J. Cryptol. 17(44), 235–261 (2004)MATHGoogle Scholar
  22. 22.
    Paterson K.G.: Cryptography from pairing, Ch. X. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds) Advances in Elliptic Curve Cryptography, Cambridge University Press, Cambridge (2005)Google Scholar
  23. 23.
    Schoof P.R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7, 219–254 (1995)MATHMathSciNetGoogle Scholar
  24. 24.
    Scott M.: Faster pairings using an elliptic curve with an efficient endomorphism. In: Progress in Cryptology—IndoCrypt 2005. Lecture Notes in Computer Science, vol. 3797, pp. 258–269. Springer-Verlag, Heidleberg (2005).Google Scholar
  25. 25.
    Scott M.: Computing the Tate pairing. In: CT-RSA’05. Lecture Notes in Computer Science, vol. 3376, pp. 293–304. Springer-Verlag, Heidleberg (2005).Google Scholar
  26. 26.
    Scott M.: Implementing cryptographic pairings. In: Pairing 2007. Lecture Notes in Computer Science, vol. 4575, pp. 177–196. Springer-Verlag, Heidleberg (2007).Google Scholar
  27. 27.
    Silverman J.H.: The Arithmetic of Elliptic Curves. Springer-Verlag, New York (1986)MATHGoogle Scholar
  28. 28.
    Takashima K.: Scaling security of elliptic curves with fast pairing using efficient endomorphisms. IEICE Trans. Fundam. E90-A(1): 152–159 (2007).Google Scholar
  29. 29.
    Vercauteren F.: Optimal pairings. IEEE Trans. Inform. Theory 56(1), 455–461 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhao C.-A., Zhang F., Zhang F., Zhang F.: A note on the Ate pairing. Int. J. Inf. Secur. 7(6), 379–382 (2008)CrossRefGoogle Scholar
  31. 31.
    Zhao C.-A., Zhang F., Huang J.: All pairings are in a group. IEICE Trans. Fundam. E91-A(10), 3084–3087 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chang-An Zhao
    • 1
  • Dongqing Xie
    • 1
  • Fangguo Zhang
    • 2
  • Jingwei Zhang
    • 2
  • Bing-Long Chen
    • 3
  1. 1.School of Computer Science and Educational SoftwareGuangzhou UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Information Science and Technology, Guangdong Key Laboratory of Information Security TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of MathematicsSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations