Designs, Codes and Cryptography

, Volume 58, Issue 1, pp 23–33

Quaternary 1-generator quasi-cyclic codes

Article
  • 115 Downloads

Abstract

Quaternary 1-generator quasi-cyclic codes are considered in the paper. Under the conditions that n is odd and gcd(|2|n, m) = 1, where |2|n denotes the order of 2 modulo n, we give the enumeration of quaternary 1-generator quasi-cyclic codes of length mn, and describe an algorithm which will obtain one, and only one, generator for each quaternary 1-generator quasi-cyclic code.

Keywords

Quasi-cyclic code Annihilator Direct sum decomposition 

Mathematics Subject Classification (2000)

11T71 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhargava V.K., Séguin G.E., Stein J.M.: Some (mk, k) cyclic codes in quasi-cyclic form. IEEE Trans. Inform. Theory 24, 630–632 (1978)MATHCrossRefMathSciNetGoogle Scholar
  2. Dey B.K., Rajan B.S.: IF q-linear cyclic codes over \({IF_{q^m}}\): DFT characterization. In: Bozatas S., Shparlinski I.E. (eds.) Lecture Notes in Computer Science, vol. 2227, 67–76 (2001).Google Scholar
  3. Gulliver T.A., Bhargava V.K.: Two new rate 2/P binary quasi-cyclic codes. IEEE Trans. Inform. Theory 40, 1667–1668 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. Hammons A.R., Kumar P.V. Jr., Calderbank A.R., Sloane N.J.A., Solé P.: The 4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. Lally N.J.A.K., Fitzpatrick P.: Algebraic structure of quasi-cyclic codes. Discrete Appl. Math. 246, 157–175 (2001)CrossRefMathSciNetGoogle Scholar
  6. Ling S., Solé P.: On the algebraic structure quasi-cyclic codes I: Finite fields. IEEE Trans. Inform. Theory 47, 2751–2760 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. Ling S., Solé P.: On the algebraic structure quasi-cyclic codes II: chain rings. Des. Codes Crypotogr. 30, 113–130 (2003)MATHCrossRefGoogle Scholar
  8. Menezes A.J.: Applications of Finite Fields. Klumer Academic Publishers, Boston (1993)MATHGoogle Scholar
  9. Nechaev A.A.: Kerdock code in a cyclic form. Diskretnaya Mat. (USSR) 1, 123–139 (1989)MATHMathSciNetGoogle Scholar
  10. Séguin G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inform. Theory 50, 1745–1753 (2004)CrossRefMathSciNetGoogle Scholar
  11. Tanner R.M.: A transformation theory for a class of group invariant codes. IEEE Trans. Inform. Theory 34, 752–775 (1998)MathSciNetGoogle Scholar
  12. Tavares S.E., Bhargava V.K., Shiva S.G.S.: Some rate P/P + 1 quasi-cyclic codes. IEEE Trans. Inform. Theory 20, 133–135 (1974)MATHCrossRefMathSciNetGoogle Scholar
  13. Wan Z.-X.: Cyclic codes over Galois rings. Algebra Colloquium 6(3), 291–304 (1999)MATHMathSciNetGoogle Scholar
  14. Wan Z.-X.: Quaternary Codes. World Scientific, Singapore (1997)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySuzhouChina

Personalised recommendations