Advertisement

Designs, Codes and Cryptography

, Volume 52, Issue 3, pp 339–362 | Cite as

An improvement of discrete Tardos fingerprinting codes

  • Koji NuidaEmail author
  • Satoshi Fujitsu
  • Manabu Hagiwara
  • Takashi Kitagawa
  • Hajime Watanabe
  • Kazuto Ogawa
  • Hideki Imai
Article

Abstract

It has been proven that the code lengths of Tardos’s collusion-secure fingerprinting codes are of theoretically minimal order with respect to the number of adversarial users (pirates). However, the code lengths can be further reduced as some preceding studies have revealed. In this article we improve a recent discrete variant of Tardos’s codes, and give a security proof of our codes under an assumption weaker than the original Marking Assumption. Our analysis shows that our codes have significantly shorter lengths than Tardos’s codes. For example, when c = 8, our code length is about 4.94% of Tardos’s code in a practical setting and about 4.62% in a certain limit case. Our code lengths for large c are asymptotically about 5.35% of Tardos’s codes.

Keywords

Fingerprinting codes Collusion-secure codes C-secure codes Tardos codes Traitor tracing schemes 

Mathematics Subject Classification (2000)

94A60 94B60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blayer O., Tassa T.: Improved versions of Tardos’ fingerprinting scheme. Des. Codes Cryptogr. 48, 79–103 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform. Theory 44(5), 1897–1905 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carter M., van Brunt B.: The Lebesgue-Stieltjes Integral: A Practical Introduction. Springer-Verlag, Berlin (2000)zbMATHGoogle Scholar
  4. 4.
    Guth H.-J., Pfitzmann B.: Error- and collusion-secure fingerprinting for digital data. In: Proceedings of Information Hiding 1999 (IH’99), LNCS 1768, pp. 134–145 (2000).Google Scholar
  5. 5.
    Hagiwara M., Hanaoka G., Imai H.: A short random fingerprinting code against a small number of pirates. In: Proceedings of 16th Applied Algebra, Algebraic Algorithms, and Error Correcting Codes (AAECC-16), LNCS 3857, pp. 193–202 (2006).Google Scholar
  6. 6.
    Nuida K., Hagiwara M., Watanabe H., Imai H.: Optimization of memory usage in Tardos’s fingerprinting codes. Preprint at arXiv repository. http://www.arxiv.org/abs/cs/0610036 (2006).
  7. 7.
    Nuida K., Hagiwara M., Watanabe H., Imai H.: Optimization of Tardos’s fingerprinting codes in a viewpoint of memory amount. In: Proceedings of 9th Information Hiding (IH 2007), LNCS 4567, pp. 279–293 (2007).Google Scholar
  8. 8.
    S̆korić B., Katzenbeisser S., Celik M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Des. Codes Cryptogr. 46, 137–166 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Tardos G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 116–125 (2003).Google Scholar
  10. 10.
    Tardos G.: Optimal probabilistic fingerprint codes. To appear in: Journal of the ACM. Preprint available online at http://www.renyi.hu/~tardos/publications.html.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Koji Nuida
    • 1
    Email author
  • Satoshi Fujitsu
    • 2
  • Manabu Hagiwara
    • 1
    • 3
  • Takashi Kitagawa
    • 1
  • Hajime Watanabe
    • 1
  • Kazuto Ogawa
    • 2
  • Hideki Imai
    • 1
    • 4
  1. 1.Research Center for Information Security (RCIS)National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  2. 2.Science and Technical Research LaboratoriesJapan Broadcasting Corporation (NHK)TokyoJapan
  3. 3.Center for Research and Development InitiativeChuo UniversityTokyoJapan
  4. 4.Faculty of Science and EngineeringChuo UniversityTokyoJapan

Personalised recommendations