Advertisement

On circulant self-dual codes over small fields

  • Markus Grassl
  • T. Aaron Gulliver
Article

Abstract

We construct self-dual codes over small fields \({\mathbb {F}_q}\) with q = 3, 4, 5, 7, 8, 9 of moderate length with long cycles in the automorphism group. With few exceptions, the codes achieve or improve the known lower bounds on the minimum distance of self-dual codes.

Keywords

Self-dual codes Circulant codes Bounds on codes 

Mathematics Subject Classifications (2000)

94B05 94B65 94B60 

References

  1. Arasu K.T., Chen Y.Q., Gulliver T.A., Song W.: Self-dual codes over \({\mathbb {F}_3}\) and negacirculant conference matrices. In: Proceedings 2006 IEEE International Symposium on Information Theory, Seattle, WA, pp. 1301–1304, July 2006.Google Scholar
  2. Assmus E.F. Jr., Mattson H.F. Jr.: On weights in quadratic-residue codes. Discret. Math. 3, 1–20 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  3. Beenker G.F.M.: A note on extended quadratic residue codes over GF(9) and their ternary images. IEEE Trans. Inf. Theory 30, 403–405 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  4. Bosma W., Cannon J.J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  5. Brouwer A.E.: Bounds on the size of linear codes. In: Pless, V.S., Huffman, W.C.(eds) Handbook of Coding Theory, pp. 295–461. Elsevier, Amsterdam (1998)Google Scholar
  6. Gaborit P.: Quadratic double circulant codes over fields. J. Comb. Theory Ser. A 97, 85–107 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  7. Gaborit P., Otmani A.: Tables of self-dual codes. Online available at http://www.unilim.fr/pages_perso/philippe.gaborit/SD/.
  8. Gaborit P., Otmani A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9, 372–394 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  9. Gaborit P., Zémor G.: Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes. IEEE Trans. Inf. Theory 54, 3865–3872 (2000)CrossRefGoogle Scholar
  10. Georgiou S., Koukouvinos C.: New self-dual codes over GF(5). In: Walker M. (ed.) Proceedings Cryptography and Coding: 7th IMA International Conference. Lecture Notes in Computer Science, vol. 1746, pp. 63–69. Springer, Heidelberg (1999).Google Scholar
  11. Grassl M.: Bounds on the minimum distance of linear codes. Available online at http://www.codetables.de.
  12. Grassl M.: Searching for linear codes with large minimum distance. In: Bosma, W., Cannon, J.(eds) Discovering Mathematics with Magma—Reducing the Abstract to the Concrete, pp. 287–313. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. Gulliver T.A.: Optimal double circulant self-dual codes over \({\mathbb {F}_4}\) . IEEE Trans. Inf. Theory 46, 271–274 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  14. Gulliver T.A., Harada M.: New optimal self-dual codes over GF(7). Graphs Comb. 15, 175–186 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  15. Gulliver T.A., Harada M.: Double circulant self-dual codes over GF(5). Ars Comb. 56, 3–13 (2000)MathSciNetzbMATHGoogle Scholar
  16. Gulliver T.A., Harada M.: New nonbinary self-dual codes. IEEE Trans. Inf. Theory 54, 415–417 (2008)CrossRefMathSciNetGoogle Scholar
  17. Gulliver T.A., Harada M., Miyabayashi H.: Double circulant and quasi-twisted self-dual codes over \({\mathbb {F}_5}\) and \({\mathbb {F}_7}\) . Adv. Math. Commun. 1, 223–238 (2007)MathSciNetCrossRefGoogle Scholar
  18. Gulliver T.A., Harada M., Miyabayashi H.: Double circulant self-dual codes over \({\mathbb {F}_4}\) II. Australas. J. Comb. 39, 163–174 (2007)MathSciNetzbMATHGoogle Scholar
  19. Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near-MDS self-dual codes. IEEE Trans. Inf. Theory, 54, 4354–4360 (2008)CrossRefMathSciNetGoogle Scholar
  20. Harada M., Holzmann W.H., Kharaghani H., Khorvash M.: Extremal ternary self-dual codes constructed from negacirculant matrices. Graphs Comb. 23, 401–417 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  21. Harada M., Östergård P.R.J.: Self-dual and maximal self-orthogonal codes over \({\mathbb {F}_7}\) . Discrete Math. 256, 471–477 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  22. Harada M., Östergård P.R.J.: On the classification of self-dual codes over \({{\mathbb F}_5}\) . Graphs Comb. 19, 203–214 (2003)zbMATHGoogle Scholar
  23. Jenson R.A.: A double circulant presentation of quadratic residue codes. IEEE Trans. Inf. Theory 26, 223–227 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  24. Karlin M.: New binary coding results by circulants. IEEE Trans. Inf. Theory 15, 81–92 (1969)CrossRefMathSciNetzbMATHGoogle Scholar
  25. Kim J.-L., Lee Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 105, 79–95 (2004)CrossRefzbMATHGoogle Scholar
  26. Lam C.W.H., Pless V.S.: There is no (24,12,10) self-dual quaternary code. IEEE Trans. Inf. Theory 36, 1153–1156 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  27. Leon J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28, 496–511 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  28. Leon J.S., Pless V.S., Sloane N.J.A.: Self-dual codes over GF(5). J. Comb. Theory Ser. A 32, 178–194 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  29. MacWilliams F.J., Odlyzko A.M., Sloane N.J.A., Ward H.N.: Self-dual codes over GF(4). J. Comb. Theory Ser. A 25, 288–318 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  30. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  31. Majer V.: Algorithmen zur Berechnung von Automorphismen von Codes. Universität Karlsruhe (TH), Diplomarbeit (2006)Google Scholar
  32. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  33. Pless V.S.: Symmetry codes over GF(3) and new five-designs. J. Comb. Theory Ser. A 12, 119–142 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  34. Pless V.S., Tonchev V.D.: Self-dual codes over GF(7). IEEE Trans. Inf. Theory 33, 723–727 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  35. Rains E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45, 1827–1832 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  36. Sloane N.J.A.: Is there a (72,36) d = 16 self-dual code?. IEEE Trans. Inf. Theory 19, 251 (1973)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Algorithmen und Kognitive Systeme (IAKS), Fakultät für InformatikUniverstität Karlsruhe (TH)KarlsruheGermany
  2. 2.Institute for Quantum Optics and Quantum Information (IQOQI)Austrian Academy of SciencesInnsbruckAustria
  3. 3.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations